
Customizing Builder Xcessory

custTOC.fm Page i Thursday, January 22, 2009 2:30 PM

Copyright © 2002-2009 Integrated Computer Solutions, Inc.
Customizing Builder Xcessory™ is copyrighted by Integrated Computer Solutions, Inc., with all
rights reserved. No part of this book may be reproduced, transcribed, stored in a retrieval system,
or transmitted in any form or by any means electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of Integrated Computer Solutions, Inc.

Integrated Computer Solutions, Inc.
54B Middlesex Turnpike, Bedford, MA 01730
Tel: 617.621.0060
Fax: 617.621.9555
E-mail: info@ics.com
WWW: http://www.ics.com

Trademarks
Builder Xcessory, BX, Builder Xcessory PRO, BX PRO, BX/Win Software Development Kit,
BX/Win SDK, Database Xcessory, DX, DatabasePak, DBPak, EnhancementPak, EPak, ViewKit
ObjectPak, VKit, and ICS Motif are trademarks of Integrated Computer Solutions, Inc.
All other trademarks are properties of their respective owners.

Third printing
January 2009

custTOC.fm Page ii Thursday, January 22, 2009 2:30 PM

http://www.ics.com

Customizing Builder Xcessory iii

Contents
How to Use This Manual

Overview ... vii
Notation Conventions ... viii
Definitions ... x
Prerequisite Knowledge... xii

Chapter 1—Extending Builder
Xcessory

Overview ... 1
Extending Builder Xcessory.. 2

Ensuring Availability of Data to Builder Xcessory... 2
Telling Builder Xcessory How to Handle Data... 3
Builder Xcessory Object Packager.. 3

Summary of Customization Procedures .. 4

Chapter 2—Adding Widgets
Overview ... 5
Obtaining a Widget.. 6

User-defined Widgets.. 6
Information Sources .. 6

Making the Widgets Available .. 7
How Builder Xcessory Searches for a Library.. 7
Specifying the Widget Creation Function ... 8
Adding Widgets Using the bx.o File ... 8
Example... 11

Generating WML And Other Control Files... 12
Modifying WML Files .. 13

Chapter 3—Adding C++
Components

Overview ... 15
Adding Components .. 16

Creating a Component (CreationFunction) ... 16
Abstract Components .. 17
Methods For Setting Resources... 18

Managing Subclasses of Existing Components... 21
Subclasses.. 21
Editing a Component (AttributeFunction) .. 24

custTOC.fm Page iii Thursday, January 22, 2009 2:30 PM

iv Customizing Builder Xcessory

Example Edit Method ... 24
Editing Resources On Subclass Components.. 27

Set Mode ... 27
Get Mode... 29

Components That Can Take Children... 30
Obtaining the Parent for Children (ChildParentFunction) .. 31
Adding A Child To The Component (ChildFunction).. 31
Editing Child Constraint Resources (ConstraintFunction) ... 32

Chapter 4—Adding Resource
Type Editors

Overview ... 33
Adding Resource Type Editors ... 34

Example .. 35
Entry points ... 36

Creation Functions .. 36
Widget Hierarchy Generated in the Creation Function .. 36
Creation Function Prototype ... 37
Simple Editor Creation Function .. 38
Allowing Builder Xcessory to Update Internal Structures ... 39

Update Functions... 40
EditorUpdateFunc Function Prototype ... 40
Example .. 40

Fetch Functions ... 41
Registering Resource Type Editors... 42

RegisterResourceEditor Function Prototype... 43
Compiling to a Shared Library.. 44
Relinking Builder Xcessory .. 44

Chapter 5—Adding Predefined
Callbacks

Overview ... 45
Adding Callbacks .. 46

Adding a Callback to Predefined Function List.. 46
Example .. 47

Chapter 6—Builder Xcessory
Functions

Overview ... 49
RegisterUserCallback and RegisterUserTypedCallback... 50
AddUserDefinedEditors .. 50

custTOC.fm Page iv Thursday, January 22, 2009 2:30 PM

Customizing Builder Xcessory v

AddUserFunctions ... 50
RegisterUserEditor .. 50
SetRscEditorUpdate... 51

Chapter 7—Using the BX
Object Packager

Overview ... 53
Builder Xcessory Object Packager .. 54
Starting the Builder Xcessory Object Packager .. 54
Builder Xcessory Object Packager Main Window.. 54

Menubar... 56
Toolbar .. 56
Catalog Editor.. 56
Message Area .. 56

Editing WML Files .. 57
BX Object Packager Edit Menu .. 57
Loading Data From Widget Libraries ... 59

Background WML Files .. 59
Editing the Catalog .. 60
Unassigned Catalog ... 60
Command-line Options and Resources ... 62

Chapter 8—Modifying the
WML File

Overview ... 63
WML Files... 64
Changing Class Information.. 64

Object Class Diagram.. 65
Class Attributes ... 66
Class Definitions ... 68

Changing Resource Information.. 86
Changing Enumeration Information.. 102
Changing DataType Information... 103
Changing Other WML Entries .. 104
UIL Data Types ... 105

Chapter 9—Creating Other
Control Files

Overview ... 107
Builder Xcessory Control Files ... 108
Catalog File.. 109

custTOC.fm Page v Thursday, January 22, 2009 2:30 PM

vi Customizing Builder Xcessory

Catalog File Format .. 109
Item Attributes .. 111
Groups Attributes .. 112
Catalog Attributes ... 113
Conditions ... 113

Collection File ... 116
Control File ... 116
Pixmap File ... 117

Chapter 10—Using Custom Objects
Overview ... 119
Primitive and Manager Classes ... 120
Composite Widget Classes.. 120
Resources .. 121
Objects that Control Specific Children ... 122

Index .. 123

custTOC.fm Page vi Thursday, January 22, 2009 2:30 PM

Customizing Builder Xcessory vii

How to Use This Manual

Overview
The following table provides an overview of Customizing Builder Xcessory:

Chapter 1—Extending Builder Xcessory Introduces basic concepts about
how to customize and extend
Builder Xcessory.

Chapter 2—Adding Widgets Describes how to add widgets to
Builder Xcessory.

Chapter 3—Adding C++ Components Describes how to add class
components to Builder Xcessory.

Chapter 4—Adding Resource Type Editors Describes how to add resource type
editors to Builder Xcessory.

Chapter 5—Adding Predefined Callbacks Describes predefined callbacks and
how to add them to Builder Xces-
sory.

Chapter 6—Builder Xcessory Functions Describes functions you can use to
customize Builder Xcessory.

Chapter 7—Using the BX Object Packager Describes the components of and
how to use the Builder Xcessory
Object Packager.

Chapter 8—Modifying the WML File Describes the components of and
how to modify OSF/Motif Widget
Meta Language (WML) files, as
well as how Builder Xcessory uses
WML files.

Chapter 9—Creating Other Control Files Describes the different control files
Builder Xcessory uses, and how to
create them.

Chapter 10—Using Custom Objects Describes how to incorporate your
own widgets and C++ components
into Builder Xcessory, and provides a
feature checklist of widget function-
ality.

how.fm Page vii Thursday, January 22, 2009 2:31 PM

HOW TO USE THIS MANUAL
Notation Conventions

viii Customizing Builder Xcessory

Notation Conventions
This document uses the following notation conventions:

{BX} The syntax {BX} refers to the directory into which the Builder Xcessory is
installed. The default directory is the following:

/opt/bxpro-6.0

Index Most index entries are in lowercase:
fonts

fixed width 28
non-XLFD 228

Entries capitalized in Builder Xcessory are capitalized in the index:
Force To Selected 161
Force to Selected Tree 161

Languages Because Builder Xcessory supports multiple programming languages, not all
explanations or examples are applicable to all languages. The following icons
indicate sections specific to particular languages:

Note: Information that applies to all Motif environments does not use icons. In text,
Motif refers to C, C++, ViewKit, and UIL.

Lists The following two types of lists present procedures:

1. Numbered lists present steps to perform in sequence.

• Bulleted lists present alternate methods.

C UIL ViewKit C++ Java

how.fm Page viii Thursday, January 22, 2009 2:31 PM

HOW TO USE THIS MANUAL
Notation Conventions

Customizing Builder Xcessory ix

Objects Objects are indicated as follows:

• Palette collection names are capitalized words with intercaps:
Form or PushButton

• Instance names are lowercase words with intercaps:
form or pushButton

• Class names are capitalized words with intercaps:
Test or MyClass

Menu Notation To indicate menus and menu options, the following format is sometimes used:

BX_window_name:menu_name:menu_item(or dialog_selection)

For example, Browser:File:Exit is the Exit selection from the File menu of the
Browser window.

Text • Literals such as file names, directory paths, code and text as typed on the
command line are printed in Courier font:

.bxrc

/usr/ics

• Text preceded by a % denotes text to enter at the command line:
% bx

• Book titles, chapter names, and section names appear in italic:
Builder Xcessory Reference Manual
“Updating the Resource Editor” on page 136

• The main windows of the Builder Xcessory are capitalized as follows:
Main Window
Resource Editor

how.fm Page ix Thursday, January 22, 2009 2:31 PM

HOW TO USE THIS MANUAL
Definitions

x Customizing Builder Xcessory

Definitions
This document uses the following terms:

Click Move the cursor over an object, press a mouse button, and immediately release the
mouse button. When the button is unspecified, assume MB1 (typically the left
mouse button).

Collection A group of related user interface objects saved to the Builder Xcessory Palette for
reuse. Collections can include any UI object supported by Builder Xcessory,
including widgets, gadgets, C++ classes, or ViewKit components.

Component A user interface object, generally used in the context of ViewKit classes. ViewKit
components generally consist of collections of Motif widgets along with code to
implement general or specific functionality, encapsulated into a C++ class
subclassed from an element of the ViewKit application framework.

Cursor A graphical image appearing on the screen which reacts to the movements of a
mouse or other pointing device. In the Builder Xcessory, the cursor appears as an
angle bracket when creating a widget, and an arrow when selecting a pull-down
menu or menu item. During a drag and drop operation, it appears as an icon
reflecting the type of object dragged and the target over which it is positioned.

Drag Press a mouse button, then move the mouse without releasing the button. Typically
followed with a drop operation. The phrase, “drag on to” indicates a drag and drop
operation. Use MB2 to perform a drag and drop operation, unless otherwise
specified.

Drop Release the mouse button after positioning the mouse (and screen object) as
desired. Typically follows a drag operation. The phrase, “drop on to” indicates a
drag and drop operation. Use MB2 to perform a drag and drop operation, unless
otherwise specified.

Enter Type a new value and press the Enter key.

Gadget A user interface object built upon the Xt Intrinsics (the X Toolkit). Similar to a
widget, a gadget lacks certain data structures (such as a window) contained in a
widget. The gadget maintains this data on the client side, rather than on the server,
as does a widget. Although seldom used with today’s server performance levels,
gadgets remain supported by BX.

{lang} Specifies the currently selected language for code generation.

how.fm Page x Thursday, January 22, 2009 2:31 PM

HOW TO USE THIS MANUAL
Definitions

Customizing Builder Xcessory xi

MB1, MB2 and
MB3

Mouse buttons one, two, and three. Typically, MB1 is the left-most button, MB3,
the right-most. On a two-button mouse, MB2 is most commonly emulated by
pressing both buttons simultaneously. For actions described as “click,” assume
MB1.

MB3 Quick
Access menu

This menu is invoked by pressing MB3 while the mouse pointer is positioned over
an object on the display. The contents of the menu depend on the type of object
pointed to and the window in which you access the menu.

Object/
UI object

A reusable software entity with a user interface (UI), or visible, aspect. A generic
term for the various objects that are manipulated with Builder Xcessory. UI objects
include widgets, related collections of widgets, C++ classes, and ViewKit
components. The term object and the term UI object are interchangeable.

Paste buffer A cache into which a cut or copied object is placed. Also called a cut buffer.

Resize To change the height and/or width of an object.

Resource A user preference specification that controls elements of an application that can be
customized by the user.

Select To choose an object to be acted upon or an action to be performed; accomplished by
clicking mouse button one on an object or menu item.

Session A single, continuous working session, from the time you start Builder Xcessory
from the command line, or from another tool, to the time you select Exit from the
Browser’s File menu.

Widget A user interface object built upon the Xt Intrinsics (the X Toolkit). Motif user
interface objects are widgets.

WML OSF/Motif Widget Meta Language (WML).

how.fm Page xi Thursday, January 22, 2009 2:31 PM

HOW TO USE THIS MANUAL
Prerequisite Knowledge

xii Customizing Builder Xcessory

Prerequisite Knowledge
This document assumes that you are familiar with the X Window System and
OSF/Motif. If you are developing with ViewKit objects, this document assumes
that you are familiar with these toolkits. Consult the following documentation lists
for recommended references.

OSF/Motif
documentation

For detailed descriptions of OSF/Motif and X, refer to the following
documentation:

• Motif™ 2.1 Programmers Reference. The Open Group, 1997.
(ISBN 1-85912-119-5)

• CDE 2.1/Motif™ 2.1™ Style Guide. The Open Group, 1997.
(ISBN 1-85912-104-7)

X Window
System
documentation

• Asente, Paul, Donna Converse, and Ralph Swick. X Window System Toolkit.
Digital Press, 1997. (ISBN 1-55558-178-1)

• Scheifler, Robert W. and James Gettys. X Window System-Core Library and
Standards. Digital Press, 1996. (ISBN 1-55558-154-4)

• Scheifler, Robert W. and James Gettys. X Window System-Extension Libraries.
Digital Press, 1997. (ISBN 1-55558-146-3)

• Scheifler, Robert W. and James Gettys. X Window System-Core and Extension
Protocols. Digital Press, 1997. (ISBN 1-55558-148-X)

CDE
documentation

For information about the Common Desktop Environment (CDE) widgets, refer to
the following documents:

• CDE 1.0 Programmer’s Guide. Addison-Wesley, 1995.
(ISBN 0-201-48954-6)

• CDE 1.0 User's Guide. Addison-Wesley, 1995. (ISBN 0-201-48951-1)

ViewKit
documentation

For a description of ViewKit (VKit) classes, refer to the following documentation:

• ViewKit ObjectPak™1.5/2.1 Programmer’s Guide. Integrated Computer
Solutions, 2002. (Included with the purchase of BX PRO.)

• IRIS ViewKit™ Programmer’s Guide. Silicon Graphics, Inc. 1994. (Document
Number 007-2124-002)

how.fm Page xii Thursday, January 22, 2009 2:31 PM

HOW TO USE THIS MANUAL
Prerequisite Knowledge

Customizing Builder Xcessory xiii

EPak
documentation

For a description of EnhancementPak (EPak) widgets, refer to the following
Integrated Computer Solution’s documentation (included with BX PRO):

• EnhancementPak™ 3.0 Programmer’s Reference. Integrated Computer
Solutions, 2002.

• GraphPak™ Programmer’s Reference. Integrated Computer Solutions,2002.

Note: If you are using BX PRO, you can use and compile the EnhancementPak
widgets and ViewKit objects in your interface. If you are using Builder Xcessory,
you can use the EnhancementPak widgets and ViewKit objects in your interface,
but you must purchase their respective libraries to compile any interface built with
the EnhancementPak widgets or ViewKit objects. Contact your Sales
Representative for more information.

how.fm Page xiii Thursday, January 22, 2009 2:31 PM

HOW TO USE THIS MANUAL
Prerequisite Knowledge

xiv Customizing Builder Xcessory

how.fm Page xiv Thursday, January 22, 2009 2:31 PM

Customizing Builder Xcessory 1

Extending Builder
Xcessory 1

Overview
This chapter includes the following sections:

• Extending Builder Xcessory

• Summary of Customization Procedures

overview.fm Page 1 Thursday, January 22, 2009 2:32 PM

EXTENDING BUILDER XCESSORY
Extending Builder Xcessory

2 Customizing Builder Xcessory

Extending Builder Xcessory
You can customize and extend Builder Xcessory to handle new widgets and
component classes, different resource editors, and your own callback functions. This
capacity for extensibility makes Builder Xcessory a premier part of your
development environment, one that you can use with all objects you are working
with.

Steps for
customizing
Builder
Xcessory

Extending Builder Xcessory involves the following two steps:

• Ensuring that the extra data is available to the Builder Xcessory binary.

• Telling Builder Xcessory how to handle that data.

Ensuring Availability of Data to Builder Xcessory
Types of data include the following functions that Builder Xcessory can call:

• Widget class data describing new widgets

• C++ classes describing new components.

Regardless of the type of data, making the data available to the Builder Xcessory
binary is accomplished in the same way. On most systems, you can make a shared
library of the classes or functions and place it in a location that Builder Xcessory
searches when the library is needed, so that the library is dynamically loaded.

Using an object
file

As of Builder Xcessory 6.0, the shared library mechanism is supported on all
systems supported by Builder Xcessory 6.0. If you do not have access to a shared
version of your library, you can link with object file bx.o to produce a new Builder
Xcessory binary.

overview.fm Page 2 Thursday, January 22, 2009 2:32 PM

EXTENDING BUILDER XCESSORY
Extending Builder Xcessory

Customizing Builder Xcessory 3

Telling Builder Xcessory How to Handle Data
You can tell Builder Xcessory how to handle the data in several ways, depending on
the type of customization. In general, however, the following two primary
mechanisms are used in combination:

• Providing extra files that Builder Xcessory reads on start-up.

• Providing functions that Builder Xcessory calls, and having those functions
make special calls to Builder Xcessory to handle the customization.

On most systems these functions and calls can be in a library that Builder Xcessory
loads when it first needs to call the function.

Builder Xcessory Object Packager
For certain kinds of customization, such as adding new widgets or components, or
editing a catalog control file, Builder Xcessory provides the Builder Xcessory
Object Packager tool. You can use the Object Packager to make these customizations
whether or not you are using a system that handles dynamically loading shared
libraries. The Object Packager helps you set up the control files that Builder
Xcessory requires on all systems. For more detailed information, refer to
 Chapter 7—Using the BX Object Packager.

overview.fm Page 3 Thursday, January 22, 2009 2:32 PM

EXTENDING BUILDER XCESSORY
Summary of Customization Procedures

4 Customizing Builder Xcessory

Summary of Customization Procedures
This document examines the various customization procedures in detail. The
following table summarizes how customizations are accomplished:

Type of Customization Where Data Goes Tell Builder Xcessory How
To Use Data

New widgets In a library, loaded
dynamically from the
shared library path or
linked with the bx.o
file.

Use a WML file and other con-
trol files.

New ViewKit or
UI components

In a library, loaded
dynamically from the
shared library path.

Use a WML file and other con-
trol files.

New Resource Editors In a library, loaded
dynamically from cer-
tain Builder Xcessory
areas or linked with
the bx.o file.

Use extra functions linked to the
library making calls to extend
Builder Xcessory.

New Callback Functions In a library, loaded
dynamically from cer-
tain Builder Xcessory
areas or linked with
the bx.o file.

Use extra functions linked to the
library making calls to extend
Builder Xcessory.

overview.fm Page 4 Thursday, January 22, 2009 2:32 PM

Customizing Builder Xcessory 5

Adding Widgets 2
Overview

This chapter includes the following sections:

• Obtaining a Widget

• Making the Widgets Available

• Generating WML And Other Control Files

Obtaining a Widget

6 Customizing Builder Xcessory

Obtaining a Widget
Adding widgets1 to Builder Xcessory is a very simple procedure. The following
sections describe how to add widgets to Builder Xcessory.

User-defined Widgets
You can add your own X11R5/Motif 2.1 Xt Intrinsics-based widgets to Builder
Xcessory. These “user-defined” widgets appear on the Palette and can be accessed
and manipulated just like any other Palette collection. You must specify the widget
you wish to add to Builder Xcessory by a C file conforming to the standard
guidelines for widget writing. For more information about this style, refer to Asente,
Converse, and Swick’s X Window System Toolkit.

Information Sources
Widgets are available from a number of commercial sources, as well as freely
available from numerous locations on the Internet. The following Usenet
newsgroups and website are good sources of information about both commercial and
free widgets:

•http://www.motifzone.net

•comp.windows.x.motif

•comp.windows.x

XmDumbLabel
widget files

For the remainder of this document, we will use the XmDumbLabel widget as an
example. XmDumbLabel is a simple Motif widget that displays an XmString with
resources for fonts, color, and margins. Source code for the XmDumbLabel widget
can be found in the file {BX}/xcessory/examples/AddWidget.c. The
XmDumbLabel widget source code consists of the following files:

If you want to add more than one widget, you can group them together into one
library.

1. In this chapter, the term “widget” encompasses widgets and also gadgets.

File Description

XmDumbLabel.c Source code for the widget.

XmDumbLabel.h Public header file for the widget.

XmDumbLabelP.h Private header file for the widget.

Making the Widgets Available

Customizing Builder Xcessory 7

Making the Widgets Available
On most systems, Builder Xcessory accesses widgets by loading a shared library
when the widget class is first accessed. To load widgets dynamically using Builder
Xcessory, the following two requirements must be met:

• Widgets must be compiled into a shared library.
On most systems, you can do this by compiling the various objects of the
library with the position-independent code flag and linking the
library with any other libraries on which the new library depends. Consult
your system and compiler manuals for exact details on building shared
libraries.

• Widgets must have a Motif-style creation function that returns an
unmanaged instance of the widget.
A Motif-style creation function has the following function prototype:
Widget CreateFunction(Widget parent, char *name,

ArgList args, Cardinal num_args)

How Builder Xcessory Searches for a Library
The first time you create an instance of a widget in a shared library, Builder
Xcessory searches for the library in several locations in addition to the usual shared
library search path. Once it finds the library, Builder Xcessory loads the library and
finds and calls the widget’s creation function.

Complete search
path

The complete search path is as follows
${HOME}/.builderXcessory6/lib
{BX}/xcessory/lib
{BX}/lib
system shared-library search path

Note: On most systems, the shared-library search path is an environment
variable such as LD_LIBRARY_PATH or SHLIB_PATH. Consult your
system for details.

The name of the shared library to load is specified in the WML file for the
widget. Each widget specifies a shared library to find and load in the
LoadLibrary WML attribute. For more information on the WML file format, see
“Generating WML And Other Control Files” on page 12 and Chapter
8—Modifying the WML File.

Making the Widgets Available

8 Customizing Builder Xcessory

Specifying the Widget Creation Function
On most systems, Builder Xcessory dynamically loads a shared library containing
the widget and searches the WML file for the function to use to create it. Set the
CreationFunction attribute to name the function to call to create the widget. The
function has the same signature as the Xm-style convenience functions described in
the section “Creation function”. In addition, set the ConvenienceFunction attribute
to name the function that the code generator should use in generated code (in most
cases, these two functions will have the same value1).

Creation
function

The creation function is required for dynamically-loaded widgets. Most widgets
written for use with the Motif widget set provide such a function, in the Motif style.
For example, ICS EnhancementPak widgets have routines with names such as
XiCreateButtonBox.

If the widget you are integrating does not provide such a function, you can easily
create one, as shown in the following example:

#include <My/Widget.h>

Widget CreateMyDumbLabel(Widget parent, String name,
ArgList args, Cardinal ac)

{
return XtCreateWidget(name, xmDumbLabelWidgetClass,
parent, args, ac);

}

Compiling the
creation
function

To compile the creation function, use the following procedure:
1. Use the correct position-independent code flag for your compiler.
2. Create a shared library that contains this new object and is linked to the

necessary widget library.
3. Put this new intermediary library in one of the directories that Builder

Xcessory searches.
4. Specify the new function in the widget’s creation function WML attribute.

Adding Widgets Using the bx.o File
On systems where using shared libraries is not feasible, the widget must be linked
into the Builder Xcessory binary, along with a control function that makes a call to
extend Builder Xcessory. When you extend Builder Xcessory, you must provide the
following three functions, which Builder Xcessory calls at start-up:

1. Some advanced Builder Xcessory users provide their own creation function for specific processing in
addition to creating the widget, but name the usual ConvenienceFunction so that generated code is gen-
erated correctly.

Making the Widgets Available

Customizing Builder Xcessory 9

void AddUserWidgets()
void AddUserDefinedEditors()
void AddUserFunctions()

In our example, these functions are in a file called addWidget.c. To create a new
version of Builder Xcessory that contains your new widgets, relink addWidget.o
with the object file bx.o and the libraries containing the widgets to be integrated.

AddUserWidgets is an entry point for Builder Xcessory to use to add new
widgets. It takes no arguments and has no return value. If you rebuild Builder
Xcessory for any reason, you must provide at least an empty version of
AddUserWidgets.

Using AddUser
Widgets

Tell Builder Xcessory about the availability of new widgets by making calls to
RegisterWidgetExtended from the function AddUserWidgets. Call
RegisterWidgetExtended once for each new widget you add to Builder
Xcessory. RegisterWidgetExtended has the following function prototype:

void

RegisterWidgetExtended(char *class_name, WidgetClassRec
*class_ptr, char *conv_fct_name, XtPointer
conv_fct_ptr, char *include_file, char
*resource_prefix)

class_name Name of widget class being added to Builder Xcessory. For
example xmDumbLabelWidgetClass or
xiButtonBoxWidgetClass.

class_ptr Address of the class pointer. For example, the class of
XmDumbLabel is xmDumbLabelWidgetClass. Entered as
&xmDumbLabelWidgetClass. If NULL, you must
provide a convenience function to create the widget.

conv_fct_name Name of convenience function to create widget. The
value should be set to NULL if there is no special
convenience function to create the widget. If this value is
NULL, Builder Xcessory uses XtCreateWidget to create
an instance of the widget when it generates code.

conv_fct_ptr Pointer to function named by conv_fct_name.
Depending on whether or not class_ptr is NULL, the
convenience function should be Motif-style or Xt-style
(see “Xt-style creation routine” on page 11). If you
provide a function here, Builder Xcessory uses it to
create the widget internally.

include_file File that must be included in order to reference the

Making the Widgets Available

10 Customizing Builder Xcessory

class_ptr and any other functions or data defined by
the widget. For example, XmDumbLabel requires you to
include “<Xm/XmDumbLabel.h>”.1 If the widget
requires more than one include file, separate each file in
the string by a space, such as “<Xm/Foo.h>
<Xi/Bar.h>”. In the unlikely event that the widget
does not require an include file, include_file can be
NULL.

resource_prefix Widget set prefix used by the widget for its resource
names. For example, Motif uses “Xm” as its resource
prefix. The Athena widget set uses “Xt”. If you specify
NULL for this value, “Xm” is assumed.

Note: When adding multiple widgets, the RegisterWidgetExtended calls must
be made in SuperClass to SubClass order. For example, if
you had a widget XmDumbPushButton that was sub-classed from widget
XmDumbLabel, you would first call RegisterWidgetExtended for
XmDumbLabel and then call RegisterWidgetExtended for
XmDumbPushButton.

1. The path assumes that the header file is installed with your other Motif header files.

Making the Widgets Available

Customizing Builder Xcessory 11

Example
As an example of using RegisterWidgetExtended, we show the call used to
add the XmDumbLabel widget to Builder Xcessory.

void
AddUserWidgets()
{

}

The RegisterWidgetExtended call in the AddUserWidgets function
allows you to override how widgets are created.

Motif-style
creation routine

Builder Xcessory supports two types of creation function. The Motif-style creation
routine has the same function prototype as any Motif XmCreate function:

Widget CreateFunction(Widget parent, char *name,
ArgList args, Cardinal num_args)

Xt-style creation
routine

The Xt-style creation routine has the same function prototype as the XtCreateWidget
function:

Widget CreateFunction(char *name, WidgetClass widget_class,
Widget parent, ArgList args, Cardinal num_args)

When you register an alternate creation routine, you can choose between either of
the two styles. Also, you can choose whether the routine is used internally by Builder
Xcessory and/or externally in the code generated by Builder Xcessory.

Using an
Xt-style creation
routine

To use an Xt-style creation routine, you must provide a value for class_ptr in
RegisterWidgetExtended. How you specify values for conv_fct_name
and conv_fct_ptr determines where the new creation routine is used.

If you set conv_fct_name to NULL, Builder Xcessory uses XtCreateWidget
to create the widget in the code that is generated. If conv_fct_name is not set to
NULL, Builder Xcessory uses the string you specified as the name of the function
to call to create an instance of the widget.

If you set conv_fct_ptr to NULL, Builder Xcessory uses XtCreateWidget
to create the widget internally. If conv_fct_ptr is not set to NULL, Builder
Xcessory uses the function you specified to create an instance of the widget.

RegisterWidgetExtended(“xmDumbLabelWidgetClass”,

&xmDumbLabelWidgetClass,
Sets widget creation
routine to default
XtCreateWidget, both
internally and
in generated code.

NULL, NULL, //
“<Xm/XmDumbLabel.h>, “Xm”);

Generating WML And Other Control Files

12 Customizing Builder Xcessory

Using a
Motif-style
creation routine

If you set class_ptr to NULL in RegisterWidgetExtended, Builder
Xcessory assumes a Motif-style creation routine. You must then provide a value for
conv_fct_ptr. Otherwise, Builder Xcessory cannot create an instance of the
widget.

If you set conv_fct_name to NULL, Builder Xcessory uses XtCreateWidget in
the generated code and the function you supplied in conv_fct_ptr for creating
widget instances internally.

Building a new
Builder
Xcessory
executable

Once you create your Builder Xcessory interface file, you must rebuild the Builder
Xcessory executable. An example makefile is available in
{BX}/xcessory/examples/RebuildBX/Makefile.

The command line you use to recompile the Builder Xcessory executable varies
from system to system. In general, use a command similar to the following:

cc -o bx addWidget.o [objects] {BX}/lib/bx.o
[libraries]

The example Makefile contains command lines for all of the platforms supported by
Builder Xcessory 6.0.

Generating WML And Other Control Files

Control files Your new widgets are now available to Builder Xcessory. Builder Xcessory uses the
following control files to know what to do with the widgets:

• Widget Meta Language (WML) file
Describes the widget’s position in the class hierarchy as well as all the
resources used by the widget.

• Catalog file

• Pixmap Icon file

• TCL files

• Collection files

Refer to Chapter 8—Modifying the WML File and to Chapter 9—Creating Other
Control Files for more detailed information about control files.

Builder
Xcessory Object
Packager

The catalog and WML files are the primary control files. The Builder Xcessory
Object Packager is a tool designed to help you create and modify these files. For
more detailed information about the Builder Xcessory Object Packager, refer to
Chapter 7—Using the BX Object Packager. You can use the Builder Xcessory
Object Packager on all systems. On most systems, the Object Packager can read the

Generating WML And Other Control Files

Customizing Builder Xcessory 13

shared library containing your widgets. You can set the Object Packager to
determine the resources for those widgets and write them out to the WML file.
Refer to Chapter 8—Modifying the WML File for more detailed information.

Modifying WML Files
ICS has extended the base syntax for WML (Widget Meta-Language, described
on page 1-1142 of the OSF/Motif Programmer’s Reference for Release 1.2) to
allow its use with Builder Xcessory. Refer to Chapter 8—Modifying the WML
File for more detailed information.

Because not all widgets are written to be manipulated by an interface builder, you
must test all resources added by the new widget to make sure they behave as
expected. Much of a widget’s behavior in Builder Xcessory is customizable
through Builder Xcessory’s extensions to WML. Test each resource, decide what to
change about its behavior, and make the appropriate changes to the Builder
Xcessory-produced WML file.

Generating WML And Other Control Files

14 Customizing Builder Xcessory

Customizing Builder Xcessory 15

Adding C++
Components 3

Overview
This chapter includes the following sections:

• Adding Components

• Creating a Component (CreationFunction)

• Managing Subclasses of Existing Components

• Editing a Component (AttributeFunction)

• Editing Resources On Subclass Components

• Components That Can Take Children

addcomp.fm Page 15 Thursday, January 22, 2009 2:33 PM

Adding Components

16 Customizing Builder Xcessory

Adding Components
The procedure for adding new C++ components, such as ViewKit classes or UI class
components, is similar to the procedure for adding widgets. The classes are in a
shared library, within the same search path. Several control files define Builder
Xcessory’s use of the classes.

The primary difference between the procedure for adding class components and the
procedure for adding widgets is in the interface that Builder Xcessory uses to
manipulate the class components. Builder Xcessory can use standard functions to
manipulate all widget and gadgets because they are subclasses of the basic Xt widget
classes. The mechanisms for manipulating widgets and gadgets are defined by Xt.
For example, there are standard Xt functions to create widgets and to change their
resource values. For Class Components, no such standards are available.

Because there is no standard way to manipulate ViewKit or UI class components,
you must provide standardized interface functions such that Builder Xcessory can
operate on the components. Your code then acts as a filter between Builder Xcessory
and the component you are operating on.

Create a shared library that contains these functions (and possibly the component as
well) and place it in a directory in the library search path used by Builder Xcessory.
The names of the functions are specified in the WML specification for each
component. Whenever you create an instance of the component in question, Builder
Xcessory loads the shared library and uses the functions you specified in the WML
specification.1

The following sections describe five functions you can use to manipulate class
components.

Creating a Component (CreationFunction)

Regular
instantiable
components

An instantiable component is a component that can be created directly with a call to
new. This routine can have any name, but must match the Xm-style creation
prototype:

void* CreateComponent(Widget parent, char* name,
ArgList args, Cardinal arg_count);

This routine should create an instance of your component and return the
instance as a void* cast. Your component must be a subclass of UIComponent

1. Builder Xcessory calls all these functions, including widget classes. Advanced Builder Xcessory users
might want to monitor what Builder Xcessory is doing with a widget class; they can provide these other
functions. Normally, however, the functions are required only when integrating class components.

addcomp.fm Page 16 Thursday, January 22, 2009 2:33 PM

Adding Components

Customizing Builder Xcessory 17

(generated by Builder Xcessory) or VkComponent. The following example
illustrates a sample create method:
extern "C" void*
CreateMyComponent(Widget parent, char* name,

ArgList args, Cardinal ac)
{

MyComponent* obj = new MyComponent(name, parent);
XtSetValues(obj->baseWidget(), args, ac);

return (void*)obj;

Conditions for
calling the
routine

This routine is called under the following conditions:

• When a new instance of the component is required.

• When the component needs to be recreated, for whatever reason.

Abstract Components
An abstract component is a component that cannot be created directly with a call to
new. The user of the class must first make a subclass of this class before instantiation
with new can take place. Builder Xcessory cannot create instances of abstract
classes so the integration of these classes is somewhat more involved than the
regular instantiable component class shown in the previous section.

Integrating an
abstract class

The first step in integrating an abstract class is to create a class for which Builder
Xcessory can create an instance. This class must implement all abstract methods
provided by the abstract base class. We recommend prefixing your class name with
“BX” to distinguish this class as a Builder Xcessory integration class. If you are
integrating an abstract class called MyAbstract, then your integration class can be
called BXMyAbstract (this name is not enforced by Builder Xcessory but it is a
convenient naming convention).

addcomp.fm Page 17 Thursday, January 22, 2009 2:33 PM

Adding Components

18 Customizing Builder Xcessory

The create routine now creates an instance of the new subclass:
extern "C" void*
CreateMyAbstract (Widget parent, char* name,

ArgList args, Cardinal ac)
{

BXMyAbstract* obj = new BXMyAbstract (name, parent);
EditMyAbstract ((void*)obj, True, args, ac);

return (void*)obj;
}

Important: All actions performed on this component are performed on your
subclass, although in Builder Xcessory it appears as though they are applied to the
abstract class.

Builder Xcessory must also enforce that whenever the user creates an instance of this
abstract class, a concrete subclass is first created within Builder Xcessory, which is
then instantiated for the user. To inform Builder Xcessory that a class should be
automatically subclassed whenever an instance is created, use the WML flag:

AutoSubclass = "MyAbstract";

The quoted string is the name of the class being subclassed. In most cases this string
will be the same as the abstract class name.

When creating any abstract class it is common to give protected scope to methods
that alter the state of the abstract portion of the component. This ensures that the
subclass can manipulate its behavior without having to have those methods publicly
available.

When creating a concrete subclass for Builder Xcessory to instantiate, those
protected methods are not available to the Edit function described in “Editing a
Component (AttributeFunction)” on page 24. To facilitate editing these resources
(by calling the protected methods), the Builder Xcessory subclass should make all
these methods public. By default, they call the abstract classes protected methods.

Managing
additional
constructor
parameters

Because most components are composed of several widgets or components, it is
unlikely that your component will have resources applied only to its base widget. As
far as the user of your component is concerned, there is a set of resources presented
to them in the Builder Xcessory Resource Editor.

Methods For Setting Resources
The component writer can set these resources using one of the following methods:

• Setting the method on the class

addcomp.fm Page 18 Thursday, January 22, 2009 2:33 PM

Adding Components

Customizing Builder Xcessory 19

• Setting the constructor parameter

Setting methods
on a class

Refer to “Editing a Component (AttributeFunction)” on page 24 for more detailed
information on resources set using a set method on the class.

Setting the
constructor
parameter

The only time in the integration process that you actually create an instance of an
object is in the creation function. Therefore, you must manage constructor
parameters within the creation function.

Note: Do not create an instance of the object in any function but the creation
function.

To allow additional constructor parameters, scan the ArgList passed to the Create
method for any resources that correspond to constructor parameters. The appropriate
constructor can then be called based on which resources are passed.

You can recreate a component more than once with Builder Xcessory. If you have
resources that are constructor parameters, any change to these attributes in Builder
Xcessory causes the component to be recreated. Builder Xcessory passes all
resources that have changed from their default values to the creation function. To
mark a resource as a constructor parameter, add the following to the Resource
definition in the WML file:

Recreate = True;

It is highly likely that constructor parameters have no corresponding get method
associated with them. If this is the case, then the resource should also be specified as:

NeverVerify = True;

addcomp.fm Page 19 Thursday, January 22, 2009 2:33 PM

Adding Components

20 Customizing Builder Xcessory

Example create
method dealing
with
constructors

The following example illustrates a create method that deals with additional
constructor parameters:

extern "C" void*
CreateMyComponent(Widget parent, char *name,

 ArgList args, Cardinal ac)
{

// Storage for the constructor parameter value.

char *label = NULL;

// So as not to pass the constructor parameter resource

// to the Edit function, we’ll allocate a new resource

// list and copy in only the resources not corresponding

// to constructor parameters.

Cardinalrsc_count = 0;

ArgList resources=(ArgList)XtMalloc(ac*sizeof(Arg));

// Now scan the list for constructor parameters.

for (int i = 0; i < ac; i++)
 if (!strcmp("label", args[i].name))

{
label = (char *)args[i].value;

}
else
{

XtSetArg(resources[rsc_count],
args[i].name, args[i].value);

rsc_count++;
}

}

// Create the component with the constructor
//parameter and pass the remaining attributes to the
//Edit function.

MyComponent*obj = new MyComponent(name, parent, label);
EditMyComponent((void *)obj, True, resources, rsc_count);

// Free the allocated memory.

XtFree((char *)resources);

// Return the new component.

return (void *)obj;
}

In this example, the resource “label”1 was removed from the ArgList before the

addcomp.fm Page 20 Thursday, January 22, 2009 2:33 PM

Managing Subclasses of Existing Components

Customizing Builder Xcessory 21

ArgList was passed on to the Edit function. Removing the resource is a wise
move, because this resource might be applied to the base widget of the
component, producing unwanted results (as shown in “Editing a Component
(AttributeFunction)” on page 24).

Managing Subclasses of Existing Components
While most components integrated into Builder Xcessory are relatively
primitive, the component model that Builder Xcessory follows encourages the
creation of abstract classes and subclasses of existing classes. If a class’s
superclass has already been integrated into Builder Xcessory, then some of the
work described in Chapter 8—Modifying the WML File will be reduced.

Subclasses
Subclasses present more of an issue for editing the component’s resources.
“Editing Resources On Subclass Components” on page 27 describes regular
resources that have set/get methods provided in the sub- or superclass.
However, as described in“Managing additional constructor parameters” on
page 18, some resources are used as constructor parameters, which poses a
difficult problem. The CreateComponent integration method for the superclass
already deals with these resources. But, because that method creates an instance
of our superclass, it is a practical impossibility to call the superclass’s
CreateComponent method in a subclass.

Writing a new
CreateComponent
method

One solution to this problem is to write a new CreateComponent method for the
subclass that contains all the code required to deal with the superclass’s
constructor resources. This results in duplication of code for the superclass’s
constructor resources. If the superclass is changed then all the subclass
integration code will need to be modified.

Writing a routine An alternative solution to this problem is to write a routine that is called from
the creation function for both the superclass and subclass. This routine can have
any prototype, but at the very least will need to take an ArgList (containing a list
of resources) and a Cardinal (set to the number of items in the ArgList). This
routine would scan the resource list for constructor parameters and somehow
provide the values to the caller. Both the superclass and subclass creation
function could then use this routine to scan for the constructor parameter and so
save recoding this search for every subclass that needs it.

1. Although a literal string is used here, usually the value is defined in a header file (as with widget
resources). It might appear as XzNlabel or MyNlabel.

addcomp.fm Page 21 Thursday, January 22, 2009 2:33 PM

Managing Subclasses of Existing Components

22 Customizing Builder Xcessory

Example Taking this approach, the creation function used for MyComponent in the previous
example is split into two functions as shown in the following example.

char *
FindMyComponentLabel(ArgList before, Cardinal before_count,

ArgList after, Cardinal *after_count)
{

// Storage for the constructor parameter value.

char*label = NULL;

// Scan the list for constructor parameters.

for (int i = 0; i < before_count; i++)
{

if (!strcmp("label", args[i].name))
{

label = (char *)args[i].value;
}
else
{

XtSetArg(after[*after_count],
before[i].name, before[i].value);

*after_count++;
}

}
return label;

}

extern "C" void *
CreateMyComponent(Widget parent, char *name,

ArgList args, Cardinal ac)
{ // So as not to pass the constructor parameter resource

// to the Edit function, we’ll allocate a new resource
// list and copy in only the resources not corresponding
// to constructor parameters.

Cardinal rsc_count = 0;
ArgList resources = (ArgList)XtMalloc(ac*sizeof(Arg))

// Extract the constructor parameter from the ArgList

char*label = FindMyComponentLabel(args, ac,
resources, &rsc_count);

// Create the component with the constructor parameter

addcomp.fm Page 22 Thursday, January 22, 2009 2:33 PM

Managing Subclasses of Existing Components

Customizing Builder Xcessory 23

// and pass the remaining attributes to the Edit function.

MyComponent*obj = new MyComponent(name, parent, label);
EditMyComponent((void *)obj, True, resources, rsc_count);

// Free the allocated memory.

XtFree((char *)resources);

// Return the new component.

return (void *)obj;
}

Now, if we created a subclass of MyComponent that also needed to extract the
label constructor parameter, its creation function would also call
FindMyComponentLabel().

addcomp.fm Page 23 Thursday, January 22, 2009 2:33 PM

Managing Subclasses of Existing Components

24 Customizing Builder Xcessory

Editing a Component (AttributeFunction)

Editing
component
resources

Typically, you edit object attributes in C++ with set/get method pairs. Usually,
classes supply only a set method. Rarely does the component supply only a get
method. Builder Xcessory allows you to provide a method to do the binding between
ArgList items and methods on a component by providing a single method to
accomplish both set and get functions. This function should check each Arg in the
ArgList to see if it matches a component resource (which will be defined in the
WML file), or a base widget resource. The function supplied should match the
prototype:
void EditComponent(void* object, Boolean set, ArgList args,

Cardinal arg_count);

Example Edit Method
This function is called every time an attribute is changed in the Builder Xcessory
Resource Editor. The following section illustrates a sample edit method:
extern "C" void
EditMyComponent(void *object, Boolean set,

ArgList p_args, Cardinal p_ac)
{

MyComponent *obj = (MyComponent *)object;

// A loop index variable.

int i;

// Allocate two argument lists --
// one for base widget resources, used when values
// are both set and retrieved.

ArgList bw_args = (ArgList)XtMalloc(p_ac * sizeof(Arg));
Cardinal bw_ac = 0;

// and one for component level resources, used ONLY
// when values are retrieved.

ArgList c_args = (ArgList)XtMalloc(p_ac * sizeof(Arg));
Cardinalc_ac = 0;

// Loop through the parameter argument list either set or
// get the values appropriately.

for (i = 0; i < p_ac; i++)
{

if (!strcmp("myAttribute", p_args[i].name))
{
if (set)
{

addcomp.fm Page 24 Thursday, January 22, 2009 2:33 PM

Managing Subclasses of Existing Components

Customizing Builder Xcessory 25

// p_args[i].value contains a pointer to
// the value to set.

MyAttributeType*val =
(MyAttributeType *) p_args[i].value;

// Set the value of "myAttribute" by calling
// the corresponding method.

obj->setMyAttribute(val)
}

else
{

// Get the current value of "myAttribute"
// and store it in c_args[c_ac].value.

XtSetArg(c_args[c_ac], p_args[i].name,
obj->getMyAttribute());

c_ac++;
}

}
else
{
// The attribute doesn’t correspond to a component
// method, so keep it to set or get on the base
//widget.

XtSetArg(bw_args[bw_ac], p_args[i].name,
p_args[i].value);

bw_ac++;
}

}
// Now take care of the base widget resources.

if (set)
{

XtSetValues(obj->baseWidget(), bw_args, bw_ac);
}
else
{

XtGetValues(obj->baseWidget(), bw_args, aw_ac);
// When we get values, we need to merge all the
// retrieved values back into the p_args ArgList.
// First put back the values fetched from the
// base widget.

for (i = 0; i < bw_ac; i++)
{

XtSetArg(p_args[i], bw_args[i].name,
bw_args[i].value);

}
// Then put back the values retrieved using
// methods of the component. Remember to start in
// the list where we left off in the last loop.

for (i = 0; i < c_ac; i++)

addcomp.fm Page 25 Thursday, January 22, 2009 2:33 PM

Managing Subclasses of Existing Components

26 Customizing Builder Xcessory

{
XtSetArg(p_args[bw_ac + i], c_args[i].name,

args[i].value);
}

}
// Free the allocated memory.

XtFree((char *)bw_args);
XtFree((char *)c_args);
}

This function deals with one component attribute called "myAttribute". This
resource will be described in the WML as a resource in standard resource format.
The resource name in the WML code could be XmNmyAttribute.

Note: Builder Xcessory strips off the prefix “XmN”, and allows any prefix that you
want to use before the first N. For example, “BcN,” “DtN,” “XiN,” and so forth.

This function performs the following tasks:

• Takes in a list of arguments in the standard Xt Arg structure and cycles through
them

• Builds two destination lists one for component resources (c_args), and one for
base widget resources (bw_args).

This routine behaves differently in the set and get modes. The two states are defined
in the following sections.

Set mode Note: In this case c_args is not actually used.

The argument “set” is True. For each Arg passed into the function in p_args, see
if its name matches any of the component attributes (using strcmp to compare
Arg.name to the attribute name). If the comparison succeeds, call the appropriate
set methods to set the attribute using the value supplied in Arg.value. If all
comparisons fail, add this Arg to the list of Args for the base widget.

Once each Arg has been checked, all that remains in the bw_args structure are
resources to be applied to the base widget, so call XtSetValues and pass the
bw_args structure.

Get mode The argument “set” is False. In this case, we retrieve values from the component, so
both bw_args and c_args are needed.

For each Arg passed into the function in p_args, see if its name matches any of the
component attributes. If the comparison succeeds, call the appropriate get method to
retrieve the value and assign that value to the Arg.value.

addcomp.fm Page 26 Thursday, January 22, 2009 2:33 PM

Editing Resources On Subclass Components

Customizing Builder Xcessory 27

Some component attributes may not have a set/get pair. In this case, ignore the
Arg and do not assign any value to Arg.value, or increment the counter
c_ac. It is also a good idea to use the WML construct NeverVerify =
True for this resource, so that Builder Xcessory never passes it to the Edit
function.

If the comparison with all component attributes fails, assign the Arg.name to
the bw_args. Once all component attributes have been retrieved, the
bw_args array will contain those resources to be retrieved from the
component’s base widget. Call XtGetValues to get the values for these
resources.

Now c_args contains all the attributes from the component, and bw_args
contains all the attributes from the base widget. These are now recombined into
p_args to be returned to Builder Xcessory.

This code can act as template for any EditComponent function.

Editing Resources On Subclass Components
The superclass integration files already deal with all the resources for the
superclass and its base widget, so we can leverage that code. The
EditComponent function for the subclass should deal only with its own
resources, then pass any remaining resources up to the superclass’s
EditComponent integration method. This is simple for the set version of the
function. The get version requires work similar to dealing with the base widget
of a class in “Editing component resources” on page 24.

Set Mode
For the subclass, we must check for resources specific to this class, but only
those not already dealt with by the superclass, or any of its superclasses. These
resources should be removed from the ArgList and the remaining ArgList
passed up to the superclasses EditComponent.

addcomp.fm Page 27 Thursday, January 22, 2009 2:33 PM

Editing Resources On Subclass Components

28 Customizing Builder Xcessory

Example The following code sample below shows only the set portion of the code required
for MySubComponent integration:
extern "C" void
EditMySubComponent(void *object, Boolean set,

ArgList p_args, Cardinal p_ac)
{

MySubComponent *obj = (MySubComponent *)object;

// A loop index variable.

int i;
if (set)
{

// Allocate an argument list for superclass attributes

ArgList s_args ArgList)XtMalloc(p_ac * sizeof(Arg));
Cardinal s_ac = 0;
for (i = 0; i < p_ac; i++)
{

if (!strcmp("MySubAttribute", p_args[i].name))
{

// This is a subclass attribute, so set it.

MySubAttributeType*val =
(MySubAttributeType *)p_args[i].value;

obj->setMySubAttribute(val);
}
.
.
.
else
{

// No subclass attribute applied to this, so
// save it for passing to the superclass.

XtSetArg(s_args[s_ac],
p_args[i].name, p_args[i].value);

s_ac++;
}

}
// Now call the superclass’s Edit function.

EditMyComponent(object, set, s_args, s_ac);
// Free the allocated memory.

XtFree((char *)s_args);
}

}

addcomp.fm Page 28 Thursday, January 22, 2009 2:33 PM

Editing Resources On Subclass Components

Customizing Builder Xcessory 29

Get Mode
This adds the complication that it is necessary to find the subclass’s values and pass
any others to the superclass. Once the superclass returns its values, they must be
merged with the subclass’s before they can be returned.

Code The following code example merges the get code into the previous example:
extern "C" void
EditMySubComponent(void *object, Boolean set,

ArgList p_args, Cardinal p_ac)
{

MySubComponent *obj = (MySubComponent *)object;

// A loop index variable.

int i;

// Allocate an argument list for superclass attributes

ArgList s_args=(ArgList)XtMalloc(p_ac * sizeof(Arg));
Cardinal s_ac = 0;

// Allocate an argument list for values retrieved via
// methods of this component.

ArgList c_args=ArgList)XtMalloc(p_ac * sizeof(Arg));
Cardinal c_ac = 0;
for (i = 0; i < p_ac; i++)
{

if (!strcmp("MySubAttribute", p_args[i].name))
{

if (set)
{
MySubAttributeType *val =

(MySubAttributeType *)p_args[i].value;
obj->setMySubAttribute(val);
}
else
{

XtSetArg(c_args[c_ac], p_args[i].name,
obj->getMySubAttribute());

c_ac++;
}

}
.
.
.
else
{

// No subclass attribute corresponds to this
// attribute name, so pass it up to the superclass.

XtSetArg(s_args[s_ac], p_args[i].name,
p_args[i].value);

addcomp.fm Page 29 Thursday, January 22, 2009 2:33 PM

Components That Can Take Children

30 Customizing Builder Xcessory

s_ac++;
}

}
// Now call the superclass’s Edit function.

EditMyComponent(object, set, s_args, s_ac);

// Merge the retrieved values back into p_args

if (!set)
{

// First merge in the values retrieved
// from the superclass.

for (i = 0; i < s_ac; i++)
{

XtSetArg(p_args[i],
s_args[i].name, s_args[i].value);

}
// Then merge in the values retrieved
// from component methods.

for (i = 0; i < c_ac; i++)
{

XtSetArg(p_args[s_ac + i], c_args[i].name,
c_args[i].value);

}
}
// Free the allocated memory.

XtFree((char *)s_args);
XtFree((char *)c_args);

}

Components That Can Take Children
If the component can take children, the following three functions might be required:

• ChildParentFunction

• ChildFunction

• ConstraintFunction

The following sections describe these functions in detail.

addcomp.fm Page 30 Thursday, January 22, 2009 2:33 PM

Components That Can Take Children

Customizing Builder Xcessory 31

Obtaining the Parent for Children (ChildParentFunction)
To identify the parent of a given widget, use the ChildParentFunction:

Widget GetWidgetParent(void* object);

This function retrieves the ID of the widget to use as the XtParent of any child
widgets or components added to this component. If this routine is not provided,
Builder Xcessory uses the base widget of the component.

extern "C" Widget
GetMyComponentWidgetParent(void* object)
{

MyComponent* obj = (MyComponent*)object;
return obj->getAddParent();

}

Adding A Child To The Component (ChildFunction)
If the component needs to do any internal record keeping after a new child has been
added, you can specify a ChildFunction to be called:

void ModifyChildList(void* object, Widget child,
Boolean add);

This routine is used to notify the component that a child has been added or is about
to be removed, allowing the component to initialize or clean up any internal data
relating to the child. An example of this is a component like a VkTabbedDeck, which
may have an add method to register a widget or component as a tab panel after the
child has been created:

extern "C" void
ModifyMyComponentChildList(void* object, Widget child,

Boolean add)
{

MyComponent* obj = (MyComponent*)object;

if (add)
{

obj->addTabPanel(child);
}
else
{

obj->removeTabPanel(child);
}

}

addcomp.fm Page 31 Thursday, January 22, 2009 2:33 PM

Components That Can Take Children

32 Customizing Builder Xcessory

Editing Child Constraint Resources (ConstraintFunction)
If the component has attributes that can be set for each child, you can provide a
ConstraintFunction:
void EditComponentConstraint(void* object, Widget child,

Boolean set, ArgList args, Cardinal ac);

This routine provides for the case of a component applying constraint style
attributes to its children, like the TabbedDeck attribute tabLabel. The WML
definition for these resources occurs in the section for the component, but the
resource definition is declared as Constraint rather than Argument.

A resource declared in this way appears in the Constraint Resources section of any
children added to MyComponent. When those resources on the children are changed, it is this
method, EditComponentConstraint(), that gets called to set the value. This
function is nearly identical to the component Edit function, except that both the
component pointer and the child widget are passed as parameters.
extern "C" void
EditMyComponentConstraint(void *object, Widget child,

Boolean set, ArgList args, Cardinal ac)
{

MyComponent*obj = (MyComponent *)object;
for (int i = 0; i < ac; i++)
{

// This is a constraint attribute
// defined by MyComponent.
if (!strcmp(args[i].name, "childLabel"))
{

if (set)
{

obj->setChildLabel(child,
(char *)args[i].value);

}
else
{

*((char **)(args[i].value)) =
obj->getChildLabel(child);

}
}

}
}

addcomp.fm Page 32 Thursday, January 22, 2009 2:33 PM

Customizing Builder Xcessory 33

Adding Resource
Type Editors 4

Overview
This chapter includes the following sections:

• Adding Resource Type Editors

• Creation Functions

• Update Functions

• Fetch Functions

• Registering Resource Type Editors

addeditor.fm Page 33 Thursday, January 22, 2009 2:34 PM

Adding Resource Type Editors

34 Customizing Builder Xcessory

Adding Resource Type Editors

Adding
extended editors

Builder Xcessory understands and provides editors for a large number of resource
types. From time to time, you will add a widget or class component to Builder
Xcessory that defines a new resource type. In order to more easily work with the new
resource type, you might decide to add a new resource type editor (an extended
editor) to Builder Xcessory.

Note: The procedure for adding new resource type editors is similar to the
procedure for adding widgets.

On most systems, Builder Xcessory dynamically loads the shared library containing
the callbacks. If the function AddUserDefinedEditors is in the callback library, that
function is called. In the AddUserDefinedEditors function, you can make calls to other
functions to register the callbacks with Builder Xcessory on all systems.

Building the
library

To establish the library, build a shared library and include an object file with the
function AddUserDefinedEditors defined in the file.

When Builder Xcessory starts, it searches the following locations (such that
definitions in the second override definitions in the first):

{BX}/xcessory/lib/editors
{HOME}/.builderXcessory6/lib/editors/

Builder Xcessory opens all shared libraries, and searches for the function
AddUserDefinedEditors. Builder Xcessory calls all AddUserDefinedEditors
functions it finds.

Static
Integration

On systems where shared libraries are not feasible, you must modify your interface
file (addWidgets.c in our example), and add to the AddUserDefinedEditors
functions defined in the file. Then, re-link Builder Xcessory with addWidgets.c
and with a new file containing the callbacks, as described in
 Chapter 2—Adding Widgets.

addeditor.fm Page 34 Thursday, January 22, 2009 2:34 PM

Adding Resource Type Editors

Customizing Builder Xcessory 35

Example
For example, the XmDumbLabel defines a new resource type named “justify”. We
will add both a simple type editor (the editor that appears in the Resource Editor) and
an extended editor (the editor that appears when you click on the “...” button next to
the simple editor).

Modifying the
WML file

With respect to XmDumbLabel, modification of the WML file generated by Builder
Xcessory is unnecessary. However, Builder Xcessory cannot recognize that the
XmNjustify resource is of a special type.

Modify your WML file to include a DataType entry for the justify data type as
follows:

DataType justify {
TypeName = “Justify”;
TypeSize = sizeofChar;

};

Changing the
resource
definition

Change the resource definition for XmNjustify to the following resource:
XmNjustify:Argument{

Type=justify;
};

The next time you run Builder Xcessory, the XmNjustify resource for the
XmDumbLabel widget will use the editors specified for the justify datatype.
For a more detailed description of the options available in the WML file, refer to
Chapter 8—Modifying the WML File.

addeditor.fm Page 35 Thursday, January 22, 2009 2:34 PM

Creation Functions

36 Customizing Builder Xcessory

Entry points
Builder Xcessory views a resource type editor as a “black box” with only three
known entry points:

• Creation

• Update (Display)

• Fetch

Defining
functions

We define both resource type editors for the justify resource type according the
following information:

• Two creation functions (one for the simple editor and one for the extended
editor)

• Two update functions

• Two fetch functions

The following sections describe these functions in detail.

Creation Functions
Builder Xcessory calls the creation function when it requires a new copy of the
resource type editor. To implement the editor creation function, create the widgets
that comprise your editor. Builder Xcessory creates any surrounding widgets (such
as the XmDialogShell and the OK, Reset, and Dismiss buttons).

Simple editor In the case of the simple editor, Builder Xcessory does impose some constraints on
its size. Builder Xcessory passes any required resource values to the creation
function in an Xt resource argument list.

Widget Hierarchy Generated in the Creation Function
The widget hierarchy you generate in the creation function should be a singly-rooted
tree. That is, all widgets of your simple or extended resource type editors should
descend from a single container.

addeditor.fm Page 36 Thursday, January 22, 2009 2:34 PM

Creation Functions

Customizing Builder Xcessory 37

Creation Function Prototype
The creation function has the following function prototype:
Widget EditorCreateFunc(Widget parent, ArgList pargs,

Cardinal pc, XtPointer data)

parent Parent widget passed to the creation function by Builder Xcessory.
Create a container child (for example, a XmForm or
XmRowColumn) from parent and build your editor widget
hierarchy in that container.

pargs Resource argument list for the widget resource that you apply to the
container widget for your editor’s hierarchy.

pc Count of the widget resources applied to the container widget for
your editor’s hierarchy.
If you plan to add any resources yourself, use the
XtMergeArgLists function to combine your resource list with
that provided by Builder Xcessory.

data Pointer to generic data. You can use data in any way you want.
Simply allocate memory and assign the pointer to data. The data
pointer is passed to all of the other functions associated with this
instance of the type editor.

Once the function finishes building the appropriate widget hierarchy, it returns the
top-level container widget that it created.

To highlight the use of the resource type editor creation function, we’ll examine the
functions for the XmNjustify resource of the XmDumbLabel widget. Source code
for all of the justify resource editor functions is in the file
{BX}/xcessory/examples/AddEditor.c.

In this case, both the simple and extended editors build the same widget hierarchy.
The only difference between the two editors is that the simple editor builds a
horizontal radio box, but the extended editor builds a vertical radio box.

addeditor.fm Page 37 Thursday, January 22, 2009 2:34 PM

Creation Functions

38 Customizing Builder Xcessory

Simple Editor Creation Function
The following code is from the simple editor creation function:

Widget JustifySingleBuild(Widget parent, ArgList pargs,
Cardinal pc, XtPointer data)

{

... Variable Declarations...

JustifyWidgets *wids = BuildCommonData(data);

... Variable Declarations...

n = 0;
XtSetArg(args[n],XmNorientation,XmHORIZONTAL);n++;
margs = XtMergeArgLists(parg, pc, args, n);
radio = XmCreateRadioBox(parent,“justifyExtBox”,margs,

pc + n);

...Create toggle button gadgets...

SetRscEditorUpdate(wids->sngl_left,XmNdisarmCallback);
SetRscEditorUpdate(wids->sngl_cntr,XmNdisarmCallback);
SetRscEditorUpdate(wids->sngl_right,XmNdisarmCallback);

XtManageChild(radio);
return(radio);

Sets memory allocation in data as well as the
variable ‘wids’. BuildCommonData does the
memory allocation and then assigns the memory
to *(JustifyWidgets**)data.

Shows how to set your own re-
sources and merge them with
the resources provided by
Builder Xcessory.

Because the editor has no OK/Cancel but-
tons, we must provide BX with a callback
for triggering an update of
internal data.

addeditor.fm Page 38 Thursday, January 22, 2009 2:34 PM

Creation Functions

Customizing Builder Xcessory 39

This example also shows the use of the simple utility function,
SetRscEditorUpdate. When you supply your own Resource Editor entry,
Builder Xcessory does not create an automated OK/Cancel button pair to confirm
resource settings. One problem with this is that Builder Xcessory updates various
internal data when you click OK.

Allowing Builder Xcessory to Update Internal Structures

SetRscEditorUpd
ate

To allow Builder Xcessory to update its internal structures, you must set a callback
for Builder Xcessory to use. Use the function call SetRscEditorUpdate to set a
callback for Builder Xcessory to use.

Only use this utility function in the code to create a simple resource type editor.
SetRscEditorUpdate is not necessary in an extended editor.

SetRscEditorUpd
ate function
prototype

SetRscEditorUpdate has the following function prototype:
void SetRscEditorUpdate(Widget wgt, char *callback_name)

wgt Widget whose callback signals Builder Xcessory to update its
internal data. For example, if you provide your own OK
button, use that button as the wgt parameter.

callback_name Name of the callback that should be used to signal Builder
Xcessory. Builder Xcessory sets a callback function on wgt
using the callback list specified by callback_name.

addeditor.fm Page 39 Thursday, January 22, 2009 2:34 PM

Update Functions

40 Customizing Builder Xcessory

Update Functions
The update function is called by Builder Xcessory to display a value in a resource
type editor. The value can be passed as either a string (the most common case) or as
a value of the actual type. The string value used by Builder Xcessory is the same
value that the fetch function returns.

Note: For Builder Xcessory to use a new resource type correctly, there must be a
resource converter to convert a string representation of the resource to the actual
expected type. Most widgets provide this type of converter for new types to allow
the resource to be set from an application defaults file. See your Xt documentation
for more information about resource converters.

EditorUpdateFunc Function Prototype
The update function has the following function prototype:

void EditorUpdateFunc(char *val_str, XtPointer val_ptr,
Widget wgt, XtPointer data,
XtPointer bx_internal)

val_str String representation of the value of the resource that should be
displayed in the resource type editor. This is the most common
way Builder Xcessory passes a value to be displayed. Always try
to use this value first when determining what to display. This
value can be NULL.

val_ptr Pointer to the value to display in the resource type. You must cast
this pointer to the correct type. This method of passing a value to
display is used rarely by Builder Xcessory. In most cases, this
value is NULL.

wgt Widget that is above the top-level container of your resource type
editor. For an extended editor, wgt is the shell widget containing
the editor. For a simple editor, wgt is the parent widget of your
top-level container.

data Pointer value that you supplied in the creation function. If you did
not specify a value, data is NULL.

bx_internal Used by Builder Xcessory. Do not modify this value.

addeditor.fm Page 40 Thursday, January 22, 2009 2:34 PM

Update Functions

Customizing Builder Xcessory 41

Example
As an example of the resource type editor update function, we’ll examine the
functions for the XmNjustify resource of the XmDumbLabel widget:
void JustifySingleUpdate(String strval, XtPointer typeval,

Widget editor, XtPointer data,
XtPointer unused)

{
 JustifyWidgets *wids = (JustifyWidgets*) data;
 int value = (int)typeval;

if (strval)
{

if (!strcmp(“left”, strval))
{

value = XmALIGNMENT_LEFT;
}
else if (!strcmp(“center”, strval))

{
value = XmALIGNMENT_CENTER;

}
else if (!strcmp(“right”, strval))
{

value = XmALIGNMENT_RIGHT;
}

switch(value)
{
case XmALIGNMENT_LEFT:

XmToggleButtonGadgetSetState(wids->sngl_left,
True, False);

XmToggleButtonGadgetSetState(wids->sngl_cntr,
False, False);

XmToggleButtonGadgetSetState(wids->sngl_right,
False, False);

break;
case XmALIGNMENT_CENTER:

... Set Toggle Button Values ...
break;

case XmALIGNMENT_RIGHT:
... Set Toggle Button Values ...
break;

}
}

First, the string value is checked for
a valid value. If it does not contain a
valid string, the value containing a
typeval is used.

addeditor.fm Page 41 Thursday, January 22, 2009 2:34 PM

Fetch Functions

42 Customizing Builder Xcessory

Fetch Functions
The fetch function is called by Builder Xcessory when it wants to obtain the current
value displayed in the resource type editor. The fetch function does what is necessary
to convert the value currently being displayed to a string representation, and returns
that value to Builder Xcessory. You can convert the returned string to the proper
resource type by using the Xt resource conversion mechanism.

EditorFetch-
Func function
prototype

The fetch function has the following function prototype:
char * EditorFetchFunc(Widget wgt, XtPointer data)

wgt Widget that is above the top-level container of your resource type
editor. For an extended editor, wgt is the shell widget containing
the editor. For a simple editor, wgt is the parent widget of your
top-level container.

data Pointer value that you supplied in the creation function. If you did
not specify a value, data is NULL.

Registering Resource Type Editors
AddUserDefinedEditors is an entry point that Builder Xcessory uses to add new
resource type editors. It takes no arguments and has no return value. If you are
rebuilding Builder Xcessory using bx.o, you must provide at least an empty version
of AddUserDefinedEditors.

Note: If you register an editor for a type already defined by Builder Xcessory
(integer, font_list, etc.), your editor overrides the Builder Xcessory editor. This
might be detrimental and is discouraged.

Use the function RegisterResourceEditor to provide Builder Xcessory with the list
of functions to use to create, update, and retrieve values from the new resource type
editor.

Call RegisterResourceEditor once for each new resource type editor that you are
adding to Builder Xcessory.

addeditor.fm Page 42 Thursday, January 22, 2009 2:34 PM

Registering Resource Type Editors

Customizing Builder Xcessory 43

RegisterResourceEditor Function Prototype
RegisterResourceEditor has the following function prototype:
void RegisterResourceEditor(char *resource_type,

EditorCreateFunc ext_create,
EditorUpdateFunc ext_update,
EditorGetFunc ext_fetch,
EditorCreateFunc simple_create,
EditorUpdateFunc simple_update,
EditorGetFunc simple_fetch)

resource_type The name of resource type. In our example using the
XmDumbLabel and its new resource “XmNjustify”, the
resource type is “justify”.

ext_create The resource type editor creation function for the extended
editor. See the description of this function in “Creation
Functions” on page 36. If this value is NULL, Builder
Xcessory creates the default editor, which is a Motif Text
widget.

ext_update The resource type editor update function for the extended editor. See
the description of this function in “Update Functions” on page 40.
If this value is NULL, Builder Xcessory uses XmTextSetString to
update the editor.

ext_fetch The resource type editor fetch function for the extended editor.
See the description of this function in “Fetch Functions” on
page 42. If this value is NULL, Builder Xcessory uses
XmTextGetString to retrieve a value.

simple_create The resource type editor creation function for the simple editor.
See the description of this function in “Creation Functions” on
page 36. If this value is NULL, Builder Xcessory creates the
default editor, which is a Motif Text widget.

simple_update The resource type editor update function for the simple editor.
See the description of this function in “Update Functions” on
page 40. If this value is NULL, Builder Xcessory uses the
XmTextSetString to update the editor.

simple_fetch The resource type editor fetch function for the simple editor. See
the description of this function in “Fetch Functions” on page
42. If this value is NULL, Builder Xcessory uses
XmTextGetString to retrieve a value.

Example As an example of using RegisterResourceEditor, the following code shows the call
used to add the XmDumbLabel widget’s “justify” type editor to Builder Xcessory:

void

addeditor.fm Page 43 Thursday, January 22, 2009 2:34 PM

Registering Resource Type Editors

44 Customizing Builder Xcessory

AddUserDefinedEditors()

{
RegisterResourceEditor(“justify”,

JustifyExtendedBuild,
JustifyExtendedUpdate,
JustifyExtendedFetch,
JustifySingleBuild,
JustifySingleUpdate,
JustifySingleFetch);

}

Once you write the code for the functions specified in this example, you must add them
to Builder Xcessory, as described in the following sections.

Compiling to a Shared Library

Adding
functions to
Builder
Xcessory by
compiling

The preferred method for adding functions to Builder Xcessory is to compile your
new functions and function AddUserDefinedEditors() together into a shared library
(refer to you platform documentation for information on how to build a shared
library) and put this new library in a directory searched by Builder Xcessory:

${HOME}/.builderXcessory6/lib/editors
{BX}/xcessory/lib/editors

When you run Builder Xcessory next, it loads all libraries in these directories and
calls AddUserDefinedEditors from each library.

Relinking Builder Xcessory
Adding
functions to
Builder
Xcessory by
relinking

An alternate method for adding functions to Builder Xcessory is to relink Builder
Xcessory and provide function AddUserDefinedEditors (as well as empty
implementations of AddUserWidgets and AddUserFunctions). Link everything with
bx.o.

When you run the new Builder Xcessory executable, the new editors are available.

addeditor.fm Page 44 Thursday, January 22, 2009 2:34 PM

Customizing Builder Xcessory 45

Adding Predefined
Callbacks 5

Overview
This chapter includes the following sections:

• Adding Callbacks

• Adding a Callback to Predefined Function List

addcallback.fm Page 45 Thursday, January 22, 2009 2:35 PM

Adding Callbacks

46 Customizing Builder Xcessory

Adding Callbacks
Builder Xcessory allows you to add callbacks of your own design to the list of
predefined callbacks in the Callback Editor. The procedure for adding predefined
callbacks is similar to that of adding resource editors.

On most systems, Builder Xcessory dynamically loads the shared library containing
the callbacks. If there is a function in that library called AddUserFunctions, it is
called. In that function, you can make calls to other functions to register the
callbacks with Builder Xcessory on all systems.

To construct this library, build a shared library and include an object file with the
function AddUserFunctions defined in it.

When Builder Xcessory starts, it looks in both locations (the definitions in the
second override the definitions in the first):

{BX}/xcessory/lib/functions
{HOME}/.builderXcessory6/lib/functions/

Static
Integration

On systems where shared libraries are not available, you must modify your interface
file (addWidgets.c in our example), and add to the AddUserFunctions defined
in the file. Then, relink Builder Xcessory with addWidgets.c and with a new file
containing the callbacks, as described in Chapter 2—Adding Widgets.

Adding a Callback to Predefined Function List
To add a callback function to the predefined function list, you must register the
function by calling one of the following functions:

void RegisterUserCallback(char *name
XtCallbackProc fct,
char *unused)

void RegisterUserTypedCallback(char *name,
XtCallbackProc fct,
char *parameter_type)

name The name of the function. You must provide a value for this
parameter.

fct A pointer to the callback function. If you do not provide a
value for this parameter, Builder Xcessory cannot use the
function in Play Mode.

addcallback.fm Page 46 Thursday, January 22, 2009 2:35 PM

Adding Callbacks

Customizing Builder Xcessory 47

unused No longer used by Builder Xcessory.

In previous versions of Builder Xcessory, the third argument
to RegisterUserCallback was the name of a file
containing the code to insert in the user’s callbacks file when
generating code for the named function. The file containing
the code must now have the same name as the function. If this
file cannot be found during code generation, Builder
Xcessory produces only a stub function.

parameter_type The name of the type for the client data parameter to the
callback. If you specify a type name, Builder Xcessory allows
the user to specify the function’s parameter, as long as its type
is the same as the type named by parameter_type.

Example
The following sections illustrate an example of adding the callback function
InterceptWMDelete to the list of predefined callbacks in Builder Xcessory.
InterceptWMDelete is written to be placed on a shell widget in its popupCallback.

InterceptWMDel
ete

InterceptWMDelete registers another function (Intercepted) with the X Translation
Manager that is called when a shell receives the WM_DELETE_WINDOW protocol
message.

The actual code for this function can be found in the {BX}/examples directory
in the file intwmdel.c.

Adding the
function to
Builder
Xcessory

To add this function to builder xcessory, you would include the following call to
RegisterUserCallback in AddUserFunctions:
void AddUserFunctions()
{

RegisterUserCallback(“InterceptWMDelete”,
InterceptWMDelete,
NULL);

}

Because InterceptWMDelete does not expect any client data, you might want
to ensure that the user cannot enter a client_data parameter inside Builder
Xcessory.

Ensuring that
the user cannot
enter client data

To ensure that the user cannot enter client_data parameters you must use
RegisterUserTypedCallback and indicate a parameter_type of “None”, as follows:
void AddUserFunctions()
{

RegisterUserTypedCallback(“InterceptWMDelete”,

addcallback.fm Page 47 Thursday, January 22, 2009 2:35 PM

Adding Callbacks

48 Customizing Builder Xcessory

InterceptWMDelete,
“None”);

}

This example registers the function InterceptWMDelete. When generating code,
Builder Xcessory looks for a file with the same name as this function,
InterceptWMDelete. If this file exists, Builder Xcessory inserts the code from this
file in the Callbacks file as long as the function InterceptWMDelete is referred to and
not already in the Callbacks file.

Builder
Xcessory search
order

Builder Xcessory searches for InterceptWMDelete in the gen directories. The order
in which it searches is:

•${HOME}/.builderXcessory6/gen/{LANG}

•{BX}/xcessory/gen/{LANG}

•{BX}/xcessory/gen/common

where {LANG} is the language for which code is being generated. This search order
allows you to better customize the generated code for the chosen language.

addcallback.fm Page 48 Thursday, January 22, 2009 2:35 PM

Customizing Builder Xcessory 49

Builder Xcessory
Functions 6

Overview
This chapter describes the following functions you can use to customize Builder
Xcessory:

• AddUserDefinedEditors

• AddUserFunctions

• RegisterUserCallback and RegisterUserTypedCallback

• RegisterUserEditor

• SetRscEditorUpdate

functions.fm Page 49 Thursday, January 22, 2009 2:35 PM

RegisterUserCallback and RegisterUserTypedCallback

50 Customizing Builder Xcessory

RegisterUserCallback and RegisterUserTypedCallback
Use the function RegisterUserCallback or
RegisterUserTypedCallback to add a predefined callback to Builder
Xcessory.

void RegisterUserCallback(char *name,
XtCallbackProc fct,
char *unused)

void RegisterUserTypedCallback(char *name,
XtCallbackProc fct,
char *parameter_type)

AddUserDefinedEditors
Use the function AddUserDefinedEditors to add resource type editors.

void AddUserWidgets(void)

AddUserFunctions
Use the function AddUserFunctions to add predefined callbacks.

void AddUserFunctions(void)

RegisterUserEditor
Use the function RegisterUserEditor to register a resource type editor.

typedef void (*EditorCreateFunc)(Widget, ArgList
Cardinal, XtPointer);

typedef void (*EditorUpdateFunc)(char *, XtPointer,
Widget, XtPointer,

XtPointer);
typedef void (*EditorFetchFunc)(Widget, XtPointer);
void RegisterResourceEditor(char *resource_type,

EditorCreateFunc ext_create,
EditorUpdateFunc ext_update,
EditorGetFunc ext_fetch,
EditorCreateFunc simple_create,
EditorUpdateFunc simple_update,
EditorGetFunc simple_fetch)

functions.fm Page 50 Thursday, January 22, 2009 2:35 PM

SetRscEditorUpdate

Customizing Builder Xcessory 51

SetRscEditorUpdate
Use the function SetRscEditorUpdate in simple_create to tell
Builder Xcessory when to update a widget with the current value.
void SetRscEditorUpdate(Widget wgt,

char *callback_name)

functions.fm Page 51 Thursday, January 22, 2009 2:35 PM

SetRscEditorUpdate

52 Customizing Builder Xcessory

functions.fm Page 52 Thursday, January 22, 2009 2:35 PM

Customizing Builder Xcessory 53

Using the BX
Object Packager 7

Overview
This chapter includes the following sections:

• Builder Xcessory Object Packager

• Editing WML Files

• Background WML Files

• Editing the Catalog

• Unassigned Catalog

• Command-line Options and Resources

objpack.fm Page 53 Thursday, January 22, 2009 2:36 PM

Builder Xcessory Object Packager

54 Customizing Builder Xcessory

Builder Xcessory Object Packager
The Builder Xcessory Object Packager is a tool for editing and writing WML and
catalog control files. The WML and catalog files control most of the behavior of the
classes in Builder Xcessory and how they appear on the Builder Xcessory Palette. In
addition, the Builder Xcessory Object Packager can automatically generate the other
necessary files (Tcl control and collection files).

The WML and catalog files are largely independent. The WML file describes
various widget or component classes and how Builder Xcessory can manipulate
them. The catalog file describes the classes that should appear on the Palette. It is
possible to define a class in the WML file and have it not appear on the Palette. It is
also possible to define an object to be generated in the catalog file while not (yet)
supplying a definition in WML.

The Builder Xcessory Object Packager recognizes that the task of defining the
characteristics of a widget or component is different from defining how it should
appear on the Palette. The Builder Xcessory Object Packager allows you to
manipulate the WML data separately from the catalog data. You can load and save
files independently, perhaps editing several catalog files in succession while
working on one WML file. However, in recognition of the tie between the two files,
the Builder Xcessory Object Packager creates a new catalog entry automatically for
newly-created widget or component classes and deletes entries for those that are
deleted.

Starting the Builder Xcessory Object Packager
To run the Builder Xcessory Object Packager, enter the following command:

% bxop60

This script sets the environment variables appropriate for your system and then runs
the Builder Xcessory Object Packager binary with the correct
-system_directory argument. For more information on command-line
options, refer to “Command-line Options and Resources” on page 62.

Builder Xcessory Object Packager Main Window
Once the BX Object Packager finishes loading, you can access the following BX
Object Packager main window (shown here without any data loaded):

objpack.fm Page 54 Thursday, January 22, 2009 2:36 PM

Builder Xcessory Object Packager Main Window

Customizing Builder Xcessory 55

Figure 1. BX Object Packager Main Window

The following sections describe the components of the interface.

objpack.fm Page 55 Thursday, January 22, 2009 2:36 PM

Builder Xcessory Object Packager Main Window

56 Customizing Builder Xcessory

Menubar
The BX Object Packager menubar offers the following menus for controlling the rest
of the application.

WML menu Allows you to open, load, and save WML files, and exit the application.

Edit menu Allows you to edit WML data.

Catalog menu Allows you to load and save catalog files, and modify the catalog view.

View menu Allows you to show/hide the toolbar, show/hide messages, and clear messages.

Help menu Provides options for obtaining help on the meaning of data and on how to manipulate
the application.

Toolbar
Duplicates the Edit menu options with their iconic representations as toolbar entries.

Catalog Editor
Displays catalog hierarchies as follows:

• Catalog hierarchy for classes that have been created but not located into a
catalog..

• Editable catalog hierarchy that displays the contents of any loaded catalog
file

Message Area
Displays informational messages and warnings for the entire application.

objpack.fm Page 56 Thursday, January 22, 2009 2:36 PM

Editing WML Files

Customizing Builder Xcessory 57

Editing WML Files
Setting data for generation into the WML file involves completing several forms
with the data appropriate to each named tag. Almost all the data is string (text)
or boolean (on/off) data; there are a few items that are lists of strings.

BX Object Packager Edit Menu
The Edit menu provides several options, each of which is shown on the BX
Object Packager Toolbar. Each menu item corresponds to one of the major
portions of the WML file. (Refer to Chapter 8—Modifying the WML File for
more detailed information, or use the Help menu or the F1 key for
context-sensitive help information.)

Edit Selector Selecting a menu item to display the Editor Selector, a list of previously defined
values of this type, if any, as shown in the following figure:

Figure 2. Editor Selector with Two Classes Defined

Adding and selecting
an item

To add a new item, use one of the following methods:

• Select an item by double-clicking on the item, and edit its
characteristics.

• Click on the Edit Selected button.

Classes and
Resources

The primary screens are for Classes and Resources. Refer to “Changing Class
Information” on page 64 and “Changing Resource Information” on page 86 for

objpack.fm Page 57 Thursday, January 22, 2009 2:36 PM

Editing WML Files

58 Customizing Builder Xcessory

more information about using these screens. In general, the most important
information is presented first.

Typically, only information marked with an asterisk is required, although your
particular objects might demand additional specifications.

Figure 3. Data Editor Screen

The data screens are designed so that you can back out your changes without
modifying the data. The “Cancel” option restores items to their previous settings
without affecting the saved data. You can then reselect the item to edit its associated
data.

Note: These screens use the Return key as a signal to save the data and to unpost.
You should use the Motif traversal mechanisms (the tab key and the arrow keys, or
clicking with the mouse) to move keyboard focus within the window.

objpack.fm Page 58 Thursday, January 22, 2009 2:36 PM

Background WML Files

Customizing Builder Xcessory 59

Loading Data From Widget Libraries
The Class Values editor allows you to define how the Builder Xcessory manipulates
the widget or component. You can define resources, automatically-created children,
and valid children.

For widgets and gadgets, there are often many resources. If you have the library
containing this widget or gadget class in the shared-library form that the Builder
Xcessory can load automatically, then you can use the Builder Xcessory Object
Packager to load the initial resource definitions directly from the library, rather than
enter them all by hand.

Loading a
library

To load a library, use the following procedure:
1. Click on the Class button.
2. In the Class Editor Selector, enter the class name for the widget or gadget.
3. Click on Edit Selected to edit the class.
4. On the Class Data screen, check that Object Type is either Widget or Gadget.
5. Set XtLiteral to the name of the widget class (for example, for XmDumbLabel,

set it to xmDumbLabelWidgetClass).
6. Select LiveObject, which tells the Builder Xcessory to load the class defined in

the WML file automatically from the library when it runs.
7. Specify LoadLibrary to name the library to load it from.

The Builder Xcessory Object Packager uses the same search path as the
Builder Xcessory, so you can probably specify just the name of the library
without specifying a full path to it. When you continue to the next item, you
will be asked for confirmation about loading the widget or gadget class from
the library.

Note: Because Xt modifies widget classes when they are initialized in such a
way that the original information in the widget or gadget class cannot be recon-
structed, if you load a library that the Builder Xcessory Object Packager itself
uses, you will see best-guess data.

8. Move to the next field with the Tab key. A dialog appears to confirm that the
resources should be loaded.

Background WML Files
The WML portion of the Builder Xcessory Object Packager offers a way to edit a
WML file. But the nature of WML files is such that they can exist in an incomplete
state. A widget class, for example, can refer to a superclass that is defined in a

objpack.fm Page 59 Thursday, January 22, 2009 2:36 PM

Editing the Catalog

60 Customizing Builder Xcessory

different WML file (such as motif.wml).

While editing a WML file describing widgets or components that you wish to make
available to the Builder Xcessory when it runs, you may find that you need to load
another WML file to make various datatypes, enumeration sets, and constants
available to the Builder Xcessory Object Packager. For this reason, the Builder
Xcessory Object Packager offers a mechanism to incorporate those WML files without
interrupting the work that you are doing on the WML file that you are editing. These
“background WML files” can be incorporated by choosing Merge Background File
on the WML menu.

Note: Edit screens that are posted are not updated with the new information. You
should apply the changes you have made, dismiss the window, and then re-edit the
item in order to see the new data defined in the merged WML file.

Editing the Catalog
You edit the catalog on the main screen (Figure 1 on page 55), setting it up as you
want it to appear when Builder Xcessory is run. You can load an existing catalog
(and save it independently), or create your own catalog. The interface shows the
catalog in the outline form, with menus representing the catalog as a whole and the
groups within it. Within a group, items are shown. You can select a menu item from
the catalog or group to cut/paste groups or items, or to change the properties of the
catalog or group. You can select a popup menu on items to modify them, or move
them to the cut buffer. Refer to Chapter 9—Creating Other Control Files for
information about property values.

The catalog is broken up into two sections. The lower section is a fully-editable
catalog. You can create new groups and items, move them about, temporarily save
them to the cut-buffer while you load a new catalog, and set the properties on them.
It is this section that is saved to the catalog file.

Unassigned Catalog
The Unassigned Catalog displays items that correspond to classes created using the
WML editor. It serves as a reminder that these items should be placed in a catalog in
order to have them appear when the Builder Xcessory is started and reads in your
newly-created files. This catalog offers a more limited set of operations appropriate
to its nature as a temporary placeholder for icons.

The catalog file is generated from the lower section, to which you can give your own
name. To move catalog entries from the upper “holding pen”, select MB3 Cut on the

objpack.fm Page 60 Thursday, January 22, 2009 2:36 PM

Unassigned Catalog

Customizing Builder Xcessory 61

item, then, creating a new group if necessary, paste them into the editable
catalog.

The catalog as a whole, and the groups and items that you create, have
properties that tie them to classes defined in WML and that affect how Builder
Xcessory displays them. For a complete description of these properties, see
“Item Attributes” on page 111 and “Groups Attributes” on page 112.

Select Properties on the catalog, group, or item to change characteristics. You
should give the catalog your choice of names, at least.

objpack.fm Page 61 Thursday, January 22, 2009 2:36 PM

Command-line Options and Resources

62 Customizing Builder Xcessory

Command-line Options and Resources
The Builder Xcessory Object Packager allows specification of several data values.
These values affect the program’s operation and can be specified as command-line
options or resources, as shown in the following table:

Resources The following sections describe the resources:

filename
Specifies the WML file to read at start-up and to operate on.

localDirectory
Specifies the user’s local directory, which is used to read files at start-up in
addition to the system directory. Usage is as in Builder Xcessory, so the Object
Packager has access to the same information and files.

prefix
Specifies the resource name prefix to use for resources loaded dynamically from
widget libraries.

systemDirectory
Specifies the system directory containing the Builder Xcessory installation.
Usage is the same as in Builder Xcessory, so that the Object Packager has access
to the same information and files.

Command-line Option Resource Type Default

-filename filename String none

-local_directory localDirectory String as in BX

-prefix prefix String XtN

-system_directory systemDirectory String as in BX

objpack.fm Page 62 Thursday, January 22, 2009 2:36 PM

Customizing Builder Xcessory 63

Modifying the
WML File 8

Overview
This chapter includes the following sections:

• WML Files

• Changing Class Information

• Changing Resource Information

• Changing Enumeration Information

• Changing DataType Information

• Changing Other WML Entries

• UIL Data Types

wmlfile.fm Page 63 Thursday, January 22, 2009 2:37 PM

WML Files

64 Customizing Builder Xcessory

WML Files
Builder Xcessory uses an extended variant of the OSF/Motif Widget Meta Language
(WML) to describe the capabilities of widgets and components. Refer to the Motif
Programmer’s Reference, Volume #3 for a thorough overview of Motif WML.

WML file
structure

A WML file consists of the following components:

• Keywords that describe the type of data to follow

• Data bounded by braces

• Name-value pairs that describe the data

If you use the Builder Xcessory Object Packager to create or edit the WML file, you
are not required to make new WML files for new widgets or class components.
However, you might want to hand-edit the file at a later time.

Warning: Use extreme caution when editing WML files. Invalid WML entries may
render Builder Xcessory inoperable

Changing Class Information
The class information includes the specific attributes that Builder Xcessory requires
to manipulate the widget or component correctly. In addition to the Motif
Programmer’s Reference, Volume #3 class directives, Builder Xcessory supports
many new directives.

Note: In the following sections, the construction “A | B | C” means “one of the
values A, B, or C”.

wmlfile.fm Page 64 Thursday, January 22, 2009 2:37 PM

Changing Class Information

Customizing Builder Xcessory 65

Object Class Diagram
An object class is specified in the WML file as follows:
Class <classname> : <classtype> {

<class attribute>;
<class attribute>;
<...>;

Resources {
<resource name>;
<resource name> {

<resource attribute>;
<resource attribute><...>;

};
<...>;

};
Controls {

<control list name>;
<object class name>;
<...>;

};

Children {
<child name> [Managed | Unmanaged];
<...>;

};
};

<classtype>
values

In the object class diagram, <classtype> can have one of the values shown in the
following table:

Resources The Resources section of the class specification lists any resources that the object

Value Description

MetaClass The object can never be instantiated, and is used only as a base class
for other object classes being described in the WML file. A Meta-
Class is useful for defining a set of attributes common to a number
of other object classes.

VkComponent The object class defines a C++ component based on the ViewKit
application framework.

UIComponent The object class defines a C++ component having the C++ class
UIComponent in its superclass hierarchy.

Widget The object class defines a windowed user interface object based on
the Xt Intrinsics.

Gadget The object class defines a windowless user interface object based on
the Xt Intrinsics.

wmlfile.fm Page 65 Thursday, January 22, 2009 2:37 PM

Changing Class Information

66 Customizing Builder Xcessory

class adds to those it inherits from its superclasses. You can also use this section to
override any of the superclass resource definitions.

Controls The Controls section lists any object classes that this object class accepts as valid
children. These can be listed individually or in the form of a ControlList. A
ControlList is simply a named list of object class names.

Children The Children section lists all of the child objects that are created by the object and
that are manipulable in Builder Xcessory. Later sections of the WML file specify
which aspects of the child objects can be modified.

Class Attributes
The following table lists the name-value pairs for the class attributes:

Note: Attributes marked as Not Used are read by Builder Xcessory, but have no
effect. These Not Used values are not guaranteed to be written to generated WML
files.

Name Type

Alias Not used

AlreadyDropsite Boolean

AlternateParent Boolean

AttributeFunction Text

AutoSubclass Text

Broken Boolean

ChildDimension One-of-Many

ChildFetchFunction Text

ChildFunction Text

ChildParentFunction Text

ChildPosition One-of-Many

ConstraintFunction Text

ConvenienceFunction Text

CreatesShell Boolean

wmlfile.fm Page 66 Thursday, January 22, 2009 2:37 PM

Changing Class Information

Customizing Builder Xcessory 67

CreationFunction Text

DefaultManaged One-of-Many

DialogClass Boolean

DocName Text

GadgetClass Text

HiddenParent Text

IncludeFile Text

InsertOrder One-of-Many

InterfaceMapFunction Text

InternalLiteral Text

InventorComponent Boolean

LangDir Text

LinkLibrary Text

LiveObject Boolean

LoadLibrary Text

MaxChildren Text (Integer)

Movement One-of-Many

MyDimension One-of-Many

MyPosition One-of-Many

NameResource Text

NeverMenuParent Boolean

NoTransform Boolean

ObjectName Text

ParentClass Not used

RealClass Text

RelatedDialogClass Text

RepaintBkgd Boolean

ShellType One-of-Many

Name (Continued) Type

wmlfile.fm Page 67 Thursday, January 22, 2009 2:37 PM

Changing Class Information

68 Customizing Builder Xcessory

Class Definitions
The Builder Xcessory-specific class directives have the following definitions:

Note: Builder Xcessory does not use all attributes, and may use some attributes that
the OSF WML documentation marks as Not Used. Some values are used by Builder
Xcessory to manipulate the widgets or class components, while closely-related values
are used by the code generator to generate code that manipulates the widgets or class
components.

AlreadyDropsite

Syntax AlreadyDropsite = True | False;

Used By Builder Xcessory only.

Description Indicates that the object class already installs Motif-type Drag and Drop handlers.
This is important to note so that Builder Xcessory can properly handle its own drag
and drop support.

If unspecified, the value is False.

AlternateParent

Syntax AlternateParent = True | False;

SuperClass Text

TclAttributeScript Text

TclCreateScript Text

TclFile Text

TclPostCreateScript Text

UsePositionIndex Boolean

WidgetClass Text

WidgetGadgetVariation Text

WidgetResource Text

XtLiteral Text

Name (Continued) Type

wmlfile.fm Page 68 Thursday, January 22, 2009 2:37 PM

Customizing Builder Xcessory 69

8
Used By Unused. Maintained for backward compatibility only.

AttributeFunction

Syntax AttributeFunction = "FunctionName";

Used By Builder Xcessory only.

Description For dynamically loaded objects only. Specifies the function to call when a
resource attribute has changed on an instance of this class object.

If unspecified, Builder Xcessory calls XtSetValues on the top widget in the
object’s hierarchy.

AutoSubclass

Syntax AutoSubclass = "ComponentClass";

Used By Builder Xcessory only.

Description Indicates that when the user tries to create an instance of this class object,
Builder Xcessory should prompt them for the name of a subclass. That is, this
class cannot be directly instantiated and must always be subclassed. The
ComponentClass string specifies the name of the class to store as the superclass
for code generation.

If unspecified, Builder Xcessory allows the user to directly instantiate the object.

Broken

Syntax Broken = True | False;

Used By Builder Xcessory only.

Description Indicates that the widget class in question has problems resetting its resources
to default values and that rather than trying to set known default values, Builder
Xcessory should simply recreate the object and its children. This is very rarely
used or needed.

If unspecified, the value is False.

ChildDimension

Syntax ChildDimension = Required | Optional | Ignored;

Used By Builder Xcessory only.

wmlfile.fm Page 69 Thursday, January 22, 2009 2:37 PM

Changing Class Information

70 Customizing Builder Xcessory

Description Indicates how child dimension resources (height, width) are treated by this object
class and thus how they should be handled by Builder Xcessory.

Required Builder Xcessory always saves the children’s width and height.

Optional Builder Xcessory saves children’s width and height only if they
have been set.

Ignored Builder Xcessory never saves the children’s width and height.
This object completely controls these resources of its children.

If unspecified, the value is Optional.

ChildFetchFunction

Syntax ChildFetchFunction = "FunctionName";

Used By Code Generator only.

Description Specifies the name of the function to use in generated code to fetch the ID of an
automatically created child widget, such as the OK button of a XmMessageBox.

If unspecified, the code generator uses XtNameToWidget to fetch widget IDs.

ChildFunction

Syntax ChildFunction = "FunctionName";

Used By Builder Xcessory only.

Description For dynamically loaded objects only. Specifies the function to call after a child of
this object class has been created and before a child of this object class is to be
destroyed.

If unspecified, Builder Xcessory does nothing after creating a child or before
deleting a child.

ChildParentFunction

Syntax ChildParentFunction = "FunctionName";

Used By Builder Xcessory only.

Description For dynamically loaded objects only. Specifies the function to call to determine the
widget ID to use as the parent for any children of this object.

If unspecified, Builder Xcessory uses the top widget in the component’s hierarchy.

wmlfile.fm Page 70 Thursday, January 22, 2009 2:37 PM

Customizing Builder Xcessory 71

8
ChildPosition

Syntax ChildPosition = Required | Optional | Ignored;

Used By Builder Xcessory only.

Description Indicates how child position resources (x, y) are treated by this object class and
thus how they should be handled by Builder Xcessory.

Required Builder Xcessory always saves the children’s x and y
coordinates

Optional Builder Xcessory saves children’s coordinates only if they
have been set.

Ignored Builder Xcessory never saves the children’s x and y. This
object completely controls these resources of its children.

If unspecified, the value is Optional.

ConstraintFunction

Syntax ConstraintFunction = "FunctionName";

Used By Builder Xcessory only.

Description For dynamically loaded objects only. Specifies the function to call to set or get
constraint resource values defined by this object class.

If unspecified, Builder Xcessory uses XtSetValues and XtGetValues to set or
retrieve values from the object’s top widget.

ConvenienceFunction

Syntax ConvenienceFunction = "FunctionName";

Used By Code Generator only.

Description For Widgets and Gadgets only. Indicates the name of the Motif-style creation
convenience function for this object class.

If unspecified, the code generator uses XtCreateWidget to create widgets.

CreatesShell

Syntax CreatesShell = True | False;

Used By Builder Xcessory only.

wmlfile.fm Page 71 Thursday, January 22, 2009 2:37 PM

Changing Class Information

72 Customizing Builder Xcessory

Description Indicates whether or not the object class creates a shell widget when it is
instantiated. If True, Builder Xcessory does not attempt to create a shell for the
object. If False, Builder Xcessory creates a shell parent for the object if it is to be
instantiated without any parent.

If unspecified, the value is False.

CreationFunction

Syntax CreationFunction = "FunctionName";

Used By Builder Xcessory only.

Description For dynamically loaded objects only. Specifies the function Builder Xcessory calls
to create an instance of the object class.

This is a required attribute for dynamically loaded objects.

wmlfile.fm Page 72 Thursday, January 22, 2009 2:37 PM

Customizing Builder Xcessory 73

8
DefaultManaged

Syntax DefaultManaged = Never | Always | Managed | Unmanaged;

Used By Builder Xcessory only.

Description Specifies how Builder Xcessory needs to handle show and hide requests for
instances of this object class.

Never Builder Xcessory ignores requests to show or hide the object
instance. The object is not explicitly shown when
instantiated.

Always Builder Xcessory ignores requests to show or hide the object
instance. The object is explicitly shown when instantiated.

Managed Builder Xcessory allows the user to show or hide the object
instance. The object is explicitly shown when instantiated.

Unmanaged Builder Xcessory allows the user to show or hide the object
instance. The object is not explicitly shown when
instantiated.

If unspecified, the value is Managed.

DialogClass

Syntax DialogClass = True | False;

Used By Builder Xcessory only.

Description Indicates whether the object class describes a Motif dialog variant, like the
XmFormDialog variant of the XmForm widget.

If unspecified, the value is False.

DocName

Syntax DocName = "string value";

Used By Unused. Maintained for backward compatibility.

wmlfile.fm Page 73 Thursday, January 22, 2009 2:37 PM

Changing Class Information

74 Customizing Builder Xcessory

GadgetClass
Syntax GadgetClass = GadgetClassName;

Used By Builder Xcessory only.

Description Specifies the name of the object class to use when the user chooses the Make Gadget
option in Builder Xcessory. This attribute only applies to Widget class definitions.

If unspecified, the value of the WidgetGadgetVariation attribute is used. If
WidgetGadgetVariation is not specified, the menu choice for Make Gadget is not
available.

HideShellParent
Syntax HideShellParent = ShellClassName;

Used By Builder Xcessory only.

Description Indicates that Builder Xcessory should always create a shell of the given class as the
parent of this object class instance regardless of what the user requested.
Additionally, the Builder Xcessory Browser does not show the shell widget in the
instance hierarchy.

If unspecified, Builder Xcessory creates shells as requested by the user and show
those shells in the Browser.

IncludeFile
Syntax IncludeFile = "ObjectHeaderFile" | "<ObjectHeaderFile>";

Used By Code Generator only.

Description Specifies the header file(s) to include in any source code that uses an instance of this
object class. If multiple header files are required for the object class, list them in the
string separated by spaces.

For example, the VkGraph component requires that three files be included when the
component is used. The syntax for the IncludeFile directive for VkGraph is as
follows:

IncludeFile = "<Xm/Xm.h> <Sgm/Graph.h> <Vk/VkGraph.h>";

If the include directive should be quoted ("...") rather than bracketed (<...>), specify
the filename without the brackets:

IncludeFile = "foo.h bar.h"

If unspecified, no header files are included for instances of this object class.

wmlfile.fm Page 74 Thursday, January 22, 2009 2:37 PM

Customizing Builder Xcessory 75

8
InsertOrder

Syntax InsertOrder = RealizedFirst | RealizedLast |
AlwaysFirst | AlwaysLast;

Used By Builder Xcessory and Code Generator.

Description Tells Builder Xcessory how to order the creation of children of this object class.

RealizedFirst The order in which the composite inserts its children
internally is first to last if the composite is realized, but last to
first if it is unrealized. Builder Xcessory generates the child
list first to last to recreate the proper stacking order in the
generated code.

RealizedLast The order in which the composite inserts its children
internally is last to first if the composite is realized, but first
to last if it is unrealized. Builder Xcessory generates the child
list last to first to recreate the proper stacking order in the
generated code.

AlwaysFirst The order in which the composite inserts its
children internally is always first to last,
regardless of its realized state.

AlwaysLast The order in which the composite inserts its
children internally is always last to first,
regardless of its realized state.

If unspecified, the value is AlwaysFirst.

InterfaceMapFunction

Syntax InterfaceMapFunction = "FunctionName";

Used By Unused. Intended future feature.

InternalLiteral

Syntax InternalLiteral = "SymbolName";

Used By Unused. Maintained for backward compatibility.

InventorComponent

Syntax InventorComponent = True | False;

wmlfile.fm Page 75 Thursday, January 22, 2009 2:37 PM

Changing Class Information

76 Customizing Builder Xcessory

Used By Builder Xcessory and Code Generator.

Description Indicates that the component is a subclass of an OpenInventor object. Builder
Xcessory uses this flag to perform special initialization for OpenInventor classes.
Likewise, the code generator uses this flag to determine whether any OpenInventor-
specific initialization needs to be done in the generated source code.

If unspecified, the object class is not treated as an OpenInventor class.

LangDir

Syntax LangDir = "C" | "CXX" | "VK" | "JAVA" | "C_UIL";

Used By Builder Xcessory only.

Description Indicates the code generation languages for which this object can be used. This
attribute is maintained principally for backward compatibility. More precise
specification of usage is available in the Palette catalog file.

If unspecified, the object is assumed to be available for all languages other than Java.

LinkLibrary

Syntax LinkLibrary = "LibrarySpecification";

Used By Code Generator only.

Description Specifies the libraries to include in the generated Makefile and Imakefile for any
application that uses an instance of the object class.

If unspecified, the code generator does not include any additional library in the
Makefile or Imakefile.

wmlfile.fm Page 76 Thursday, January 22, 2009 2:37 PM

Customizing Builder Xcessory 77

8
LiveObject

Syntax LiveObject = True | False;

Used By Builder Xcessory only.

Description Indicates whether the object class should be dynamically loaded. If True, you
must also specify (at a minimum) the CreationFunction and LoadLibrary
attributes. If False, the object class must be linked into the Builder Xcessory
executable. For VkComponent and UIComponent objects, LiveObject must
always be True.

If unspecified, the value is False.

LoadLibrary

Syntax LoadLibrary = "SharedLibraryName";

Used By Builder Xcessory only.

Description Specifies the shared library that Builder Xcessory must load in order to access
the functions to create and manipulate this object class.

In most cases, the library can be specified without a full pathname. Builder
Xcessory searches a specific set of directories to find the library; however, a
fully qualified pathname can be supplied.

Additionally, the library extension does not need to be specified. Currently
Builder Xcessory supports the .so and .sl extensions for shared libraries. If
the library specified does not have an extension, Builder Xcessory searches for
versions of the library with both the .so and .sl extensions. For example, the
CDE Widget library is libDtWidget.so on most platforms, but libDtWidget.sl
under HP-UX. For the CDE widgets, the WML file uses the following
LoadLibrary specification:

LoadLibrary = "libDtWidget";

If unspecified, no library is loaded to access the object or any of the functions
to manipulate it.

wmlfile.fm Page 77 Thursday, January 22, 2009 2:37 PM

Changing Class Information

78 Customizing Builder Xcessory

MaxChildren

Syntax MaxChildren = "NumberOfChildren";

Used By Builder Xcessory only.

Description Specifies the maximum number of children that instances of this object class can
accept. A value of “0” means that the object class does not accept any children. If
unspecified and the object class is a container subclass, the number of children is
unlimited.

Movement
Syntax Movement = SetValues | Reorder | UseParent | FormMove |

Fixed | MenuPaneMove | Configure | MoveWH;

Used By Builder Xcessory only.

Description Tells Builder Xcessory how to move children of an instance of this object class.

SetValues Use XtSetValues to set the X and Y values of the instance.

Reorder Recreate the entire child hierarchy to reflect a new ordering
of the children. This is primarily used in menu container
objects.

UseParent Move this object instance rather than the child object. This is
generally used if the object accepts only a single child and
completely controls the child’s geometry.

FormMove Set the XmForm constraint resources (XmNtopOffset,
XmNleftOffset, etc.) rather than the geometry resources
(XmNx and XmNy) to reposition the child.

MenuPaneMove Maintain the geometry settings of the child by manipulation
of XmPaned window resources. Moving a child widget
reorders the child list of this object class and moves the child
to the end of the list. This setting is largely unused.

Fixed Children cannot be moved. This object class completely controls
the placement of its child objects.

Configure Use XtConfigureWidget to move child objects. This setting is
largely obsolete and should not be used.

MoveWH Only allows moving children down (increasing XmNy value)
and/or to the right (increasing XmNx value). This option is
obsolete and should not be used.

wmlfile.fm Page 78 Thursday, January 22, 2009 2:37 PM

Customizing Builder Xcessory 79

8
If unspecified, the value is SetValues.

MyDimension

Syntax MyDimension = Required | Optional | Ignored;

Used By Builder Xcessory only.

Description Indicates how dimension resources (height, width) of this object class are to be
handled by Builder Xcessory.

Required Builder Xcessory always saves the object’s width and height.

Optional Builder Xcessory saves objects’s width and height only if
they have been set.

Ignored Builder Xcessory never saves the object’s width and height.

If unspecified, the value is Optional.

MyPosition

Syntax MyPosition = Required | Optional | Ignored;

Used By Builder Xcessory only.

Description Indicates how position resources (x, y) of this object class are to be handled by
Builder Xcessory.

Required Builder Xcessory always saves the object’s x and y
coordinates.

Optional Builder Xcessory saves object’s coordinates only if they have
been set.

Ignored Builder Xcessory never saves the object’s x and y
coordinates.

If unspecified, the value is Optional.

NameResource

Syntax NameResource = "ResourceName";

Used By Builder Xcessory only.

Description Indicates the resource Builder Xcessory should use to display an object’s
instance name. This is used only if the resource is not set to some other value.
In most cases, this option is unnecessary.

wmlfile.fm Page 79 Thursday, January 22, 2009 2:37 PM

Changing Class Information

80 Customizing Builder Xcessory

If unspecified, Builder Xcessory does not set any resources, but assumes that the
object displays its instance name as its default label.

NeverMenuParent

Syntax NeverMenuParent = True | False;

Used By Builder Xcessory only.

Description If True, indicates that, should the user try to create a popup menu child of an instance
of this object class, Builder Xcessory should automatically create the menu as a child
of this object’s parent. This is used almost exclusively for Gadget classes to avoid
setting the necessary event handlers on a windowless object.

If unspecified, the value is False.

NoTransform

Syntax NoTransform = True | False;

Used By Builder Xcessory only.

Description If True, indicates that Builder Xcessory should not allow the user to enter a new
object class in the Resource Editor Class field.

If unspecified, the value is False.

ObjectName

Syntax ObjectName = "NameString";

Used By Code Generator only.

Description Used to pass an alternate object class name to the Code Generator. In a code
generator Tcl script, the @object_name function is used to retrieve the value of this
attribute. It is rarely necessary to use this attribute.

If unspecified, the ObjectName is the same as the Class name.

RealClass

Syntax RealClass = "ObjectClassName";

Used By Builder Xcessory only.

Description Used to indicate that this object class is really just a convenience function that
creates an instance of the specified object class.

wmlfile.fm Page 80 Thursday, January 22, 2009 2:37 PM

Customizing Builder Xcessory 81

8
If unspecified, the object class is assumed to be a true Widget, Gadget,
VkComponent, or UIComponent class.

RelatedDialogClass

Syntax RelatedDialogClass = "ObjectClassName";

Used By Builder Xcessory only.

Description Indicates that if this object is created as a child of an XmDialogShell, Builder
Xcessory should treat it as an instance of the named object class.

If unspecified, Builder Xcessory assumes that no special handling of an
XmDialogShell parent is required.

RepaintBkgnd

Syntax RepaintBkgnd = True | False;

Used By Unused. Maintained for backward compatibility.

ShellType

Syntax ShellType = TopLevel | Dialog | Menu | Meta | ClassShell;

Used By Builder Xcessory only.

Description Only used for Shell widgets. Indicates the shell type for this object class.

TopLevel The object class is an option in the MB1 option menu of
Shells panel of the User Preferences dialog.

Dialog The object class is an option in the MB3 option menu of
Shells panel of the User Preferences dialog.

Menu The object class is a Motif XmMenuShell and should be
hidden. This option should almost never be used.

Meta The object class is a superclass shell that is never to be
instantiated. It is principally a placeholder and defines a set of
common attributes for shells later in the hierarchy.

ClassShell This object class is used in Classes view to contain each class
being defined in the current project. Never use this setting.

If unspecified, the object is not considered a shell.

wmlfile.fm Page 81 Thursday, January 22, 2009 2:37 PM

Changing Class Information

82 Customizing Builder Xcessory

SuperClass

Syntax SuperClass = "ClassObjectName";

Used By Builder Xcessory and Code Generator.

Description Indicates the name of the super class of this object class. For example, the
XmPushButton is a subclass of XmLabel and inherits the resources specified by the
XmLabel. To indicate this, the SuperClass of XmPushButton is set to XmLabel. In
the ViewKit class hierarchy, the VkFatalErrorDialog is subclassed from
VkErrorDialog. So, its SuperClass value is VkErrorDialog.

If unspecified, the object class is assumed to be the top of a class hierarchy and
inherits no resources.

TclAttributeScript

Syntax TclAttributeScript = "TclProcName";

Used By Code Generator only.

Description The name of the code generation Tcl procedure to call in order to process any
resources/attributes set on instances of this object class. This is primarily used for
non-widget object classes.

If unspecified, the code generator handles resources/attributes using a number of
default procedures. For C++ objects, the code generator simply calls XtSetValues on
the top-level widget of the object. For Widgets, it calls XtSetValues on the widget
instance.

TclCreateScript

Syntax TclCreateScript = "TclProcName";

Used By Code Generator only.

Description The name of the code generator Tcl procedure to call in order to generate the source
code necessary to create an instance of this object class. This is primarily used for
non-widget object classes.

If unspecified, the code generator uses default methods of creating an instance of this
object class. For C++ objects, it calls the operator new. For Widget objects, it calls
the ConvenienceFunction specified or uses XtCreateWidget if the
ConvenienceFunction is not specified.

wmlfile.fm Page 82 Thursday, January 22, 2009 2:37 PM

Customizing Builder Xcessory 83

8
TclFile

Syntax TclFile = "FileName";

Used By Code Generator only.

Description Specifies the name of a file in {BX}/xcessory/gen/class that contains
Tcl code generation functions needed when generating source code for this
object class.

If unspecified, the functions called when generating source code for an instance
of this object class are assumed to be already accessible.

TclPostCreateScript

Syntax TclPostCreateScript = "TclProcName";

Used By Code Generator only.

Description The name of the code generator Tcl procedure to call after the source code
creating an instance of this object class has been generated. This allows
additional source code to be generated to do any needed work.

If unspecified, no special source code is generated.

UsePositionIndex

Syntax UsePositionIndex = True | False;

Used By Unused. Maintained for backward compatibility.

WidgetClass

Syntax WidgetClass = WidgetClassName;

Used By Builder Xcessory only.

Description Specifies the name of the object class to use when the user chooses the Make
Widget option in Builder Xcessory. This attribute only applies to Gadget class
definitions.

If unspecified, the value of the WidgetGadgetVariation attribute is used. If
WidgetGadgetVariation is not specified, the menu choice for Make Widget is
not available.

WidgetGadgetVariation

wmlfile.fm Page 83 Thursday, January 22, 2009 2:37 PM

Changing Class Information

84 Customizing Builder Xcessory

Syntax WidgetGadgetVariation = WidgetOrGadgetClassName;

Used By Builder Xcessory only.

Description Specifies the name of the object class to use when the user chooses the Make Widget
or Make Gadget option in Builder Xcessory. This attribute specifies the Widget class
to use if this is a Gadget class and the Gadget class to use if this is a Widget class.

If unspecified, the value of the WidgetClass or GadgetClass attribute is used. If these
are not specified, the menu choices for Make Widget and Make Gadget are not
available.

WidgetResource

Syntax WidgetResource = ResourceName;

Used By Unused. Maintained for backward compatibility.

XtLiteral

Syntax XtLiteral = "WidgetClassStructureName";

Used By Builder Xcessory and Code Generator.

Description Specifies the name of the Xt WidgetClass structure that describes this object class.
This option is used only for Widget and Gadget classes. For example, the
WidgetClass structure for the Motif PushButton class is xmPushButtonWidgetClass.

If unspecified, Builder Xcessory requires that one of two conditions be true:

• The object class is dynamically loaded and the CreationFunction and
LiveObject attributes have been set.

• The object class has been added to Builder Xcessory by recompiling the
Builder Xcessory executable and specifying a creation function to use in the call to
RegisterWidgetExtended.

wmlfile.fm Page 84 Thursday, January 22, 2009 2:37 PM

Customizing Builder Xcessory 85

8
Changing Resource Information

To change resource information, change the resource definition in the WML
file. While reading the following sections, please refer to the Motif
Programmer’s Reference, Volume #3.

The resource specification tells Builder Xcessory how to manipulate a resource
for a widget or component. Resources are globally defined, but specific classes
can override various resource attributes. In addition to the Motif Programmer’s
Reference, Volume #3 resource directives, many new directives are also
supported.

Note: In the discussions of grammar in the following sections, the construction
“A | B | C” means “one of the values A, B, or C”.

Specifying a
resource in the
WML file

A resource is specified in the WML file as follows:
Resource <resourcename> : <resourcetype> {

<resource_attribute>
<resource_attribute>
<...>

};

<resourcetype> can have one of the following values:

Argument Specifies a simple attribute of an object class. Builder
Xcessory presents this resource in the Resource Editor list of
any instance of any object class that uses the resource.

Constraint Specifies a constraint attribute of an object class. Builder
Xcessory presents this resource in the Resource Editor list of
any child of the object class that uses the resource.

Reason Defines an Xt-style callback.

VkReason Defines a ViewKit-style callback.

Additionally, the value SubResource is parsed by Builder Xcessory and the
other tools, but is unused.

The name-value pairs for the Resource Attributes follow. The same values are
also used for the Resources section in a Class definition, where they override,
for a specific class, the general attributes of a resource; differences between the
two are noted where they exist: (Attributes marked as Not Used are read by
Builder Xcessory, but have no effect.)

wmlfile.fm Page 85 Thursday, January 22, 2009 2:37 PM

Changing Resource Information

86 Customizing Builder Xcessory

Note: Values unused by Builder Xcessory are not guaranteed to be written to
generated WML files.

Name Type

ActionView Boolean

Alias Not used

AllView Boolean

AllowEmptyValue Boolean

AlwaysDefault Boolean

AlwaysOutput Boolean

AlwaysSetValues Boolean

AppDefaults Boolean

AugmentDefault Text

AutoSet Boolean

BeView Boolean

CallbackFunc Boolean

CodeOutput Boolean

CreationSet Boolean

CustomView Boolean

DbResource Boolean

Default Text

DocName Text

DropFunc Boolean

EnumerationSet Text

Exclude Boolean

Excuse Text

Expose Boolean

Forced Boolean

FreeConvert Text

wmlfile.fm Page 86 Thursday, January 22, 2009 2:37 PM

Changing Resource Information

Customizing Builder Xcessory 87

FuncDef Text

FuncProto Text

GetRoutine Text

Ignore Boolean

Insensitive Boolean

InternalLiteral Text

KeepAlloc Boolean

KeepOnMove Boolean

LangDir Text

LastWordConvert Boolean

MethodName Text

NeverSet Boolean

NeverVerify Boolean

OverrideDefault Text

ReadInitialValue Boolean

ReadOnly Boolean

Recreate Boolean

RecreateParent Boolean

Related Text

RelatedFont Text

ResourceLiteral Text

SetRoutine Text

TclScript Text

ThrowAwayOnPaste Boolean

Type Text

TypeName Text

TypeSize One-of-Many

UnderscoreConvert Boolean

Name (Continued) Type

wmlfile.fm Page 87 Thursday, January 22, 2009 2:37 PM

Changing Resource Information

88 Customizing Builder Xcessory

The following sections define the Builder Xcessory resource directives listed in the
previous table. Builder Xcessory does not use all attributes. In particular, some
attributes are retained by Builder Xcessory only for backward compatibility. Also,
Builder Xcessory may use some attributes marked Not Used in the OSF WML
documentation.

Some values are used by Builder Xcessory to control how Builder Xcessory
manipulates or displays the resource, while closely-related values are used by the
code generator to emit code that manipulates the widgets or class components.

ActionView

Syntax AllView = True | False;

Used By Builder Xcessory only.

Description Specifies that the resource is displayed in Resource Editor when the
Actions/Callbacks option is set.

If unspecified, the value is False. This item should be set to True if the resource is a
callback.

AllView

Syntax AllView = True | False;

Used By Builder Xcessory only.

Description Specifies that the resource is displayed in Resource Editor when the view option is
set to All Resources.

UpdateAllRsc Boolean

VisualView Boolean

WlShellsOnly Boolean

WlSkipSelf Boolean

WlUseAll Boolean

WlUseClasses List

WlUseSOSC Boolean

WlUseSiblings Boolean

XrmResource Boolean

Name (Continued) Type

wmlfile.fm Page 88 Thursday, January 22, 2009 2:37 PM

Customizing Builder Xcessory 89

8
If unspecified, the value is True.

AllowEmptyValue

Syntax AllowEmptyValue = True | False;

Used By Builder Xcessory only.

Description Specifies that a “NULL” string is a valid value for the resource and should not
be interpreted as resetting the value to its default value.

If unspecified, the value is False.

AlwaysDefault

Syntax AlwaysDefault = True | False;

Used By Unused. Maintained for backward compatibility.

AlwaysOutput

Syntax AlwaysOutput = True | False;

Used By Builder Xcessory only.

Description Specifies that Builder Xcessory should always save the value of the resource to
the save file.

If unspecified, the value is False.

AlwaysSetValues

Syntax AlwaysSetValues = True | False;

Used By Builder Xcessory and Code Generator.

Description When setting the resource value internally and in generated code, Builder
Xcessory never passes the value to the creation routine. Rather, the resource
value is set after the object has been created.

If unspecified, the value is False.

AppDefaults

Syntax AppDefaults = True | False;

Used By Builder Xcessory only.

Description Specifies that the resource can be specified in an application defaults file.

wmlfile.fm Page 89 Thursday, January 22, 2009 2:37 PM

Changing Resource Information

90 Customizing Builder Xcessory

If unspecified, the value is True.

AugmentDefault

Syntax AugmentDefault = "DefaultValue";

Used By Unused. Maintained for backward compatibility.

AutoSet

Syntax AutoSet = True | False;

Used By Unused. Maintained for backward compatibility.

BeView

Syntax BeView = True | False;

Used By Builder Xcessory only.

Description Specifies that the resource modifies the widgets behavior.When set to True, the
resource will be displayed in the resource editor when the view is set to "Behavior
View"

If unspecified, the value is False.

CallbackFunc

Syntax CallbackFunc = "FunctionName";

Used By Unused. Maintained for backward compatibility.

CodeOutput

Syntax CodeOutput = True | False;

Used By Builder Xcessory only.

Description Specifies that the resource can be hard-coded in the generated source code.

If unspecified, the value is True.

CreationSet

Syntax CreationSet = True | False

Used By Code Generator only.

Description Used only for Constraint resources. Specifies whether the resource should be set

wmlfile.fm Page 90 Thursday, January 22, 2009 2:37 PM

Customizing Builder Xcessory 91

8
when an object is created.

If unspecified, the value is False.

CustomView

Syntax CustomView = True | False;

Used By Builder Xcessory only.

Description A misnomer. Specifies that the resource is displayed in Resource Editor when
the view option is set to Modified Resources.

If unspecified, the value is True.

Default

Syntax Default = "ValueString";

Used By Builder Xcessory only.

Description Indicates the default value of the resource.

DocName

Syntax DropFunc = "String";

Used By Unused. Maintained for backward compatibility.

DropFunc

Syntax DropFunc = "FunctionName";

Used By Unused. Maintained for backward compatibility.

EnumerationSet

Syntax EnumerationSet = EnumerationSetName;

Used By Builder Xcessory only.

Description Defines the EnumerationSet to use as the set of values for this resource. For
example, the XmForm constraint resource XmNbottomAttachment uses the
enumeration set name “Attachment” as the set of all possible values.

If unspecified, Builder Xcessory uses a text field for the user to enter the
resource value, not a One of Many editor.

wmlfile.fm Page 91 Thursday, January 22, 2009 2:37 PM

Changing Resource Information

92 Customizing Builder Xcessory

Exclude

Syntax Exclude = True | False;

Used By Builder Xcessory only.

Description Indicates that Builder Xcessory should hide this resource. This attribute is used only in
a Class specification’s Resources section. For example, the XmNautoUnmanage
resource that all subclasses of XmBulletinBoard use is only used when the widget is a
dialog variant (XmFormDialog versus XmForm). In the Resources section of
XmForm, the XmNautoUnmanage resource is set to Exclude = True to hide the
resource.

If unspecified, the value is False.

Excuse

Syntax Excuse = "String";

Used By Builder Xcessory only.

Description Specifies a string to print instead of allowing a resource value to be set. For example,
the XmNchildren resource is not allowed to be set, so Excuse is set to Read Only.

If unspecified, the resource value can be set.

Expose

Syntax Expose = True | False;

Used By Builder Xcessory only.

Description Specifies whether or not the resource can be exposed when creating class
components in Builder Xcessory.

If unspecified, the value is True.

Forced

Syntax Forced = True | False;

Used By Unused. Maintained for backward compatibility.

FreeConvert

Syntax FreeConvert = "MemoryFreeFunctionName";

Used By Code Generator only.

wmlfile.fm Page 92 Thursday, January 22, 2009 2:37 PM

Customizing Builder Xcessory 93

8
Description Specifies the function to call in the generated code in order to free values for

this resource that are converted from string values using an Xt-style converter.

Functions that can be used in this way are void functions taking a single
argument of a pointer to the type to be freed.

If unspecified, converted values are not freed in generated code. In most cases,
this is the desired behavior. However, some widgets copy certain resource
values (such as the XmLabel with values of the XmNlabelString resource), so
that memory allocated by the converter needs to be freed.

FuncDef

Syntax FuncDef = "String";

Used By Unused. Maintained for backward compatibility.

FuncProto

Syntax FuncProto = "String";

Used By Unused. Maintained for backward compatibility.

GetRoutine

Syntax GetRoutine = "String";

Used By Unused. Maintained for backward compatibility.

Ignore

Syntax Ignore = True | False;

Used By Builder Xcessory only.

Description Specifies that a given resource should not appear in the resource list of instances
of a particular class.

If unspecified, the resource is listed where appropriate.

Insensitive

Syntax Insensitive = True | False;

Used By Unused. Maintained for backward compatibility.

wmlfile.fm Page 93 Thursday, January 22, 2009 2:37 PM

Changing Resource Information

94 Customizing Builder Xcessory

InternalLiteral

Syntax InternalLiteral = "SymbolName";

Used By Unused. Maintained for backward compatibility.

KeepAlloc

Syntax KeepAlloc = True | False;

Used By Builder Xcessory only.

Description Tells Builder Xcessory not to free memory allocated when this resource is set
internally.

If unspecified, Builder Xcessory frees the internally allocated memory.

KeepOnMove

Syntax KeepOnMove = True | False;

Used By Unused. Maintained for backward compatibility.

LangDir

Syntax LangDir = "C" | "CXX" | "VK" | "JAVA" | "C_UIL";

Used By Builder Xcessory only.

Description Indicates the code generation language for which this resource can be used.

If unspecified, the resource is assumed to be available for all languages other than
Java.

LastWordConvert

Syntax LastWordConvert = True | False;

Used By Builder Xcessory only.

Description Use the last “word” of the enumeration symbol name of the current value of this
resource as the string value in an application defaults file. The last word begins at
the last capitalized letter in the symbol name and continues to the end of the symbol
name. This is very rarely used.

If unspecified, the value is False.

wmlfile.fm Page 94 Thursday, January 22, 2009 2:37 PM

Customizing Builder Xcessory 95

8
MethodName

Syntax MethodName = "MethodNameString";

Used By Code Generator only.

Description The name of the class method to use to set the value of this resource on an
instance of a class object. The set method has no return value and takes one
argument—the value to set.

If MethodName is unspecified, the code generator uses the TclAttributeScript
of the object class to set values. If neither of those is set, the code generator uses
XtSetValues on the widget or the top-level widget of a C++ component.

NeverSet

Syntax NeverSet = True | False;

Used By Builder Xcessory only.

Description Tells Builder Xcessory to never set the resource value.

If unspecified, Builder Xcessory always tries to set the value on the object
instance in question.

NeverVerify

Syntax NeverVerify = True | False;

Used By Builder Xcessory only.

Description Indicates that Builder Xcessory should accept the value entered by the user as
the value for the resource and not attempt to fetch the resource value from the
object instance after setting it.

OverrideDefault

Syntax OverrideDefault = "DefaultValue";

Used By Builder Xcessory only.

Description Indicates that Builder Xcessory should not allow the user to set this resource
value and to display the given DefaultValue as the resource value. This is only
set on resource specifications in the Resources section of a Class specification.

ReadInitialValue

Syntax ReadInitialValue = True | False;

wmlfile.fm Page 95 Thursday, January 22, 2009 2:37 PM

Changing Resource Information

96 Customizing Builder Xcessory

Used By Unused. Maintained for backward compatibility.

ReadOnly

Syntax ReadOnly = True | False;

Used By Builder Xcessory only.

Description Indicates that the resource cannot be set by the user. Its value is displayed by Builder
Xcessory.

Recreate

Syntax Recreate = True | False;

Used By Builder Xcessory only.

Description Indicates that Builder Xcessory must recreate the object instance whenever it sets
this resource value. Essentially, this is used to indicate creation-time only resources.

RecreateParent

Syntax RecreateParent = True | False;

Used By Builder Xcessory only.

Description Indicates that Builder Xcessory must recreate the object instance’s parent whenever
it sets this resource value.

Related

Syntax Related = ResourceName;

Used By Builder Xcessory and Code Generator.

Description Names a resource for which this resource acts as a counter.

RelatedFont

Syntax RelatedFont = ResourceName;

Used By Builder Xcessory only.

Description Names a XmFontList resource that provides the font tags used by this XmString
resource.

wmlfile.fm Page 96 Thursday, January 22, 2009 2:37 PM

Customizing Builder Xcessory 97

8
ResourceLiteral

Syntax ResourceLiteral = "String";

Used By Unused. Maintained for backward compatibility.

SetRoutine

Syntax SetRoutine = "SetEnabled" | "SetListResource" | "SetFormAttachment" |
"SetFormOffsetPosition" | "SetRecomputeSize" | "SetSensitive" |
"SetTearOffModel";

Used By Builder Xcessory only.

Description Tells Builder Xcessory to use one of several special routines to set this resource.
Avoid using this attribute.

TclScript

Syntax TclScript = "TclProcName";

Used By Code Generator only.

Description Specifies a tcl function that the code generator should call when generating
source code to set this resource value.

ThrowAwayOnPaste

Syntax ThrowAwayOnPaste = True | False;

Used By Builder Xcessory only.

Description Indicates that Builder Xcessory should not try to set this resource value when
pasting an instance of an object class that originally set this resource value.

Type

Syntax Type = WMLDataType;

Used By Builder Xcessory and Code Generator.

Description Matches the resource to a defined data type. Builder Xcessory uses this attribute
to determine default attributes for the resource as well as to match the resource
to an editor. This attribute is required.

wmlfile.fm Page 97 Thursday, January 22, 2009 2:37 PM

Changing Resource Information

98 Customizing Builder Xcessory

TypeName

Syntax TypeName = "ConverterTypeName";

Used By Builder Xcessory and Code Generator.

Description This value is the to_type used by XtConvertAndStore. Builder Xcessory and the
code generator use this when converting strings to actual resource values. For
example, the basic widget resource XmNheight has a TypeName of "Dimension".

TypeSize

Syntax TypeSize = sizeofBoolean | sizeofChar | sizeofDouble | sizeofFloat | sizeofInt |
sizeofLong | sizeofPointer | sizeofShort;

Used By Builder Xcessory only.

Description Indicates the size in bytes of the variable that holds the value of this resource. The
actual size of the type is determined dynamically by Builder Xcessory, and can vary
from platform to platform. It is important that this size be correct for each resource
so that Builder Xcessory can allocate sufficient space to hold a resource value and
also so that values can be correctly interpreted.

UnderScoreConvert

Syntax UnderScoreConvert = True | False;

Used By Builder Xcessory only.

Description Use the last “word” preceded by an underscore character (_) of the enumeration
symbol name of the current value of this resource as the string value in an application
defaults file. This is very rarely used.

If unspecified, the value is False.

UpdateAllRsc

Syntax UpdateAllRsc = True | False;

Used By Builder Xcessory only.

Description If this resource value is changed, forces the Resource Editor to update all the
displayed data.

VisualView

Syntax VisualView = True | False;

wmlfile.fm Page 98 Thursday, January 22, 2009 2:37 PM

Customizing Builder Xcessory 99

8
Used By Builder Xcessory only.

Description Used by Builder Xcessory to indicate that the resource affects the visual
appearance of the widget. This value should be set to True for any visually
related resource. The widget will be displayed in the resource editor when the
"View - Visual Resources" toggle is set.

If unspecified, the value is False

WlShellsOnly

Syntax WlShellsOnly = True | False;

Used By Builder Xcessory only.

Description The extended editor for this resource presents a list of all of the shells currently
instantiated by Builder Xcessory.

WlSkipSelf

Syntax WlSkipSelf = True | False;

Used By Builder Xcessory only.

Description The extended editor for this resource never lists the object instance for which
this resource is being set.

WlUseAll

Syntax WlUseAll = True | False;

Used By Builder Xcessory only.

Description The extended editor for this resource presents a list of all of the object instances
currently instantiated by Builder Xcessory.

WlUseClasses

Syntax WlUseClasses = ClassName [| ClassName...];

Used By Builder Xcessory only.

Description The extended editor for this resource presents a list of all of the object instances
of the given object classes currently instantiated by Builder Xcessory.

WlUseSOSC

wmlfile.fm Page 99 Thursday, January 22, 2009 2:37 PM

Changing Resource Information

100 Customizing Builder Xcessory

Syntax WlUseSOSC = True | False;

Used By Builder Xcessory only.

Description The extended editor for this resource presents a list of all of the grandchildren of the
object instance for which this resource is being set.

WlUseSiblings

Syntax WlUseSiblings = True | False;

Used By Builder Xcessory only.

Description The extended editor for this resource presents a list of all of the siblings of the object
instance for which this resource is being set.

XrmResource

Syntax XrmResource = True | False;

Used By Unused. Maintained for backward compatibility.

wmlfile.fm Page 100 Thursday, January 22, 2009 2:37 PM

Customizing Builder Xcessory 101

8
Changing Enumeration Information

Enumeration set definitions register the named constants used in Builder
Xcessory to specify some resource values. Typically these are integer values in
some finite range. For example, under the EnumerationSet section of the WML
file you might make the following definition.

!
! UIL Enumeration Sets
!
EnumerationSet

ArrowDirection : integer
{

XmARROW_UP;
XmARROW_DOWN;
XmARROW_LEFT;
XmARROW_RIGHT;

};

where XmARROW_UP, XmARROW_DOWN, XmARROW_LEFT, and
XmARROW_RIGHT correspond to enums or #defines in C code.

In the resource section of the WML file, you can define a resource:
Resource

XmNarrowDirection : Argument
{

Type = integer;
EnumerationSet = ArrowDirection;

};

For more information see the “Enumeration Set Definitions” in the OSF/Motif
Programmer’s Reference.

Builder Xcessory supports the following syntax:
<identifier>:”<double quoted string>” = <integer>

For example:
EnumerationSet
ArrowDirection : integer
{

XmARROW_UP:”ARROW_UP”=0;
XmARROW_DOWN:”ARROW_DOWN”=1;
XmARROW_LEFT:”ARROW_LEFT”=2;
XmARROW_RIGHT:”ARROW_RIGHT”=3;

};

If you omit the =<integer> from an EnumerationSet entry, Builder Xcessory
assumes its value to be one greater than the preceding value. The initial value is
assumed to be zero.

wmlfile.fm Page 101 Thursday, January 22, 2009 2:37 PM

Changing DataType Information

102 Customizing Builder Xcessory

Changing DataType Information
If any objects you add to Builder Xcessory use a new data type, you need to specify
a WML DataType. A DataType is specified in the WML file as follows:
DataType <datatype name> {
<datatype attribute>;
<datatype attribute>;
<...>;

};

DataTypes can have the following attributes:

CanBeApp

Syntax CanBeApp = True | False;

Used By Builder Xcessory only.

Description Resource values of this type can be put in an application defaults file.

CanBeCode

Syntax CanBeCode = True | False;

Used By Builder Xcessory only.

Description Resource values of this type can be hard-coded in the generated source code.

CanBeEmpty

Syntax CanBeEmpty = True | False;

Used By Builder Xcessory only.

Description The empty (NULL) string is acceptable for resource values of this type. Builder
Xcessory should not interpret a NULL value as meaning to reset the resource value
to its default value.

wmlfile.fm Page 102 Thursday, January 22, 2009 2:37 PM

Changing Other WML Entries

Customizing Builder Xcessory 103

TypeName

Syntax TypeName = "ConverterTypeName";

Used By Builder Xcessory and Code Generator.

Description This value is the to_type used by XtConvertAndStore. Builder Xcessory and
the code generator use this when converting strings to actual resource values.
For example, the basic datatype, integer, has a TypeName of "Int".

TypeSize

Syntax TypeSize = sizeofBoolean | sizeofChar | sizeofDouble |
sizeofFloat | sizeofInt | sizeofLong | sizeofPointer | sizeofShort;

Used By Builder Xcessory only.

Description Indicates the size in bytes of the variable that holds the value of this datatype.
The actual size of the type is determined dynamically by Builder Xcessory, and
can vary from platform to platform.

In addition to the aforementioned attributes, all other attributes defined in the
OSF/Motif documentation for DataTypes are parsed, but ignored by Builder
Xcessory.

Changing Other WML Entries
Typically, the WML file also contains sections for CharacterSet, Children, and
Control List. Builder Xcessory uses these entries as described in the OSF/Motif
documentation.

wmlfile.fm Page 103 Thursday, January 22, 2009 2:37 PM

UIL Data Types

104 Customizing Builder Xcessory

UIL Data Types
This section contains additional information about the WML file format that will be
useful should hand-editing be necessary. Builder Xcessory uses the following UIL
data types:

Note: Values are entered as strings and converted to the correct format with the
XtConvert mechanism.

UIL Data Type Description

asciz_table Multibyte character string table char **.

boolean 1 Byte Xt Boolean. For 4 byte Booleans, use integer.

color Any pixel value.

compound_string Motif XmStrings only.

float Double float.

font Any font-like structure, e.g., XFontStruct.

font_table Motif XmFontList.

identifier Default value for unknown types.

integer Basic integer value, either 1, 2, 4, or 8 bytes.

keysym Motif Keysym only.

pixmap Pixmap of screen depth.

reason Any callbacks.

single_float Single float.

string Equivalent to char *.

string_table Table of XmStrings only.

translation_table Translation or accelerator table.

wchar Wide character string.

widget_ref Any widget reference.

wmlfile.fm Page 104 Thursday, January 22, 2009 2:37 PM

UIL Data Types

Customizing Builder Xcessory 105

wmlfile.fm Page 105 Thursday, January 22, 2009 2:37 PM

UIL Data Types

106 Customizing Builder Xcessory

wmlfile.fm Page 106 Thursday, January 22, 2009 2:37 PM

Customizing Builder Xcessory 107

Creating Other
Control Files 9

Overview
This chapter includes the following sections:

• Builder Xcessory Control Files

• Catalog File

• Collection File

• Control File

• Pixmap File

control.fm Page 107 Thursday, January 22, 2009 2:38 PM

Builder Xcessory Control Files

108 Customizing Builder Xcessory

Builder Xcessory Control Files
Builder Xcessory uses the WML file to specify how to manipulate the widget classes
and user-interface components that you have added. However, Builder Xcessory
uses other control files as well. These files specify which WML files should be read
by Builder Xcessory upon startup, under what conditions, and how the objects
should appear on the Palette. The following table describes the control files:

File extensions When files refer to one another, they omit the extensions, for example “.tcl” or
“.wml” or “.pix”. Builder Xcessory uses the extension appropriate to the file type.

Installed files When a file is described as installed into {BX}/some_directory, the file might
be installed into that directory, as a system file. Or the file might be installed into
your own area in the local .builderXcessory6 directory, with a similar
directory structure.

Control File Description

Catalog Identifies the conditions under which the items named in the WML
files appear on the Palette.

Collection Identifies the hierarchy and extra attributes that Builder Xcessory
should use to create an instance of the item; specified in the catalog
file.

Pixmap Identifies the icon image that should appear when an item in the
WML file appears on the Palette, as specified in the
catalog file.

Tcl Identifies which WML files to include.

WML Describes how to manipulate the widget classes and user-interface
components.

control.fm Page 108 Thursday, January 22, 2009 2:38 PM

Catalog File

Customizing Builder Xcessory 109

Catalog File
The Catalog file is a textual description of how the Builder Xcessory Palette
should appear. The Palette shows multiple groups of items. For example, all
Motif Container widget classes are shown together.1

Contents of catalog
file

The Catalog file contains information on the name given to the Catalog,
including the following information:

• List of groups

• Name that should be shown with each group

• Interface items that initially appear within the group

If you use the Builder Xcessory Object Packager to create a catalog file, you will
see how to locate items by direct manipulation within groups and how to set
their attributes. You may modify the catalog file later, or create the file
manually.

Catalog File Format
Catalog files use the following format:

<catalog attribute>;
<catalog attribute>;
<...>;

Group <groupname> [: <condition>] {
<group attribute>;
<group attribute>;
<...>;

Items {
<itemname> [: <condition>] {

<item attribute>;
<item attribute>;
<...>;

};
! ... additional groups or items ...

};
! ... additional groups or items ...

};
!... additional groups ...

The file begins with attributes that apply to the catalog as a whole. A list of
Palette groups and the contents of those groups follows the catalog attributes.

1. In the default view.

control.fm Page 109 Thursday, January 22, 2009 2:38 PM

Catalog File

110 Customizing Builder Xcessory

Group
specifications

A Group specification lists all of the items and other groups that are to be displayed
as part of a Palette group of the given name. Each group can include an optional
condition that is used by Builder Xcessory to determine whether to show a group and
its contents.

Item
specifications

Groups can contain Items and Group specifications. The Items section lists the actual
Palette items that correspond to an object class in a WML file. Similar to a Group
specification, items can include an optional condition that is used by Builder
Xcessory to determine whether to show the item.

We’ll use the first part of the file for the Motif widgets, provided by Builder
Xcessory, as an example:

!
! Default Motif Widget Catalog
!
DocName = "Motif Widgets";

Group motif_containers : Language != "JAVA" {
DocName = "Motif Containers";
DefaultState = Open;
Items {

xm_main_window {
 Class = "XmMainWindow";
 DocName = "XmMainWindow";
 PixmapFile = "MainW";
 LargePixmapFile = "MainW_large";
 CollectionFile = "MainW";
 Exported;
};

 xm_scrolled_window {
 Class = "XmScrolledwindow";
 DocName = "XmScrolledwindow";
 PixmapFile = "ScrolledW";
 LargePixmapFile = "ScrolledW_large";
 CollectionFile = "ScrolledW";
 Exported;
 };
 xm_paned_window {
 Class = "XmPanedWindow";
 DocName = "XmPanedWindow";
 PixmapFile = "PanedW";
 LargePixmapFile = "PanedW_large";
 CollectionFile = "PanedW";
 Exported;
 };

! other items not shown

};
};

control.fm Page 110 Thursday, January 22, 2009 2:38 PM

Catalog File

Customizing Builder Xcessory 111

Item Attributes
You can use the following attributes in an item specification:

Class

Syntax Class = "WMLClassName";

Description Specifies the object class as named in a WML file. This attribute is required for every
item.

CollectionFile

Syntax CollectionFile = "FileBaseName";

Description Specifies the collection file to use when creating an instance of this object. Builder
Xcessory appends “.col” to the given FileBaseName and searches:

${HOME}/.builderXcessory6/collections

followed by
{BX}/xcessory/collections

when looking for the file.

The collection file is a simple UIL file that specifies resources to set on each instance
of the object class that Builder Xcessory creates. The Object Packager generates a
collection file for every object class that you add.

DocName

Syntax DocName = "String";

Description Specifies the string to display in the label that the Palette pops up over the item when
the Palette is in Pixmaps Only view.

Exported

Syntax Exported;

Description Currently unused by Builder Xcessory. Exported indicates visibility to other users in
the future.

LargePixmapFile

Syntax LargePixmapFile = "FileBaseName";

Description Specifies a pixmap file basename to use as the icon for the object on the Palette when
-largeIcon was passed to BX at execution. This specifies a pixmap with a size of

control.fm Page 111 Thursday, January 22, 2009 2:38 PM

Catalog File

112 Customizing Builder Xcessory

32x32, which is similar to the PixmapFile in all regards but size. This is a required
field. It has been created to help those who may be unable to see smaller pixmaps.

PixmapFile

Syntax PixmapFile = "FileBaseName";

Description Specifies the pixmap file basename to use as the icon for the object on the Palette.
Pixmap files have the .pix extension and can be located in either
${HOME}/.builderXcessory6/pixmaps or
{BX}/xcessory/pixmaps. Builder Xcessory uses a default pixmap for any
items that do not specify a PixmapFile attribute or for which the PixmapFile cannot
be found.

Pixmap files are XPM Version 3 format files. To be consistent with the other
pixmaps on the Palette, icons should be 20x20 pixels and use no more than 8 colors.
All of the pixmaps provided with Builder Xcessory use no more than 7 common
colors and a separate color as to act as a common group background. You can use
{BX}/xcessory/pixmaps/BXTemplate.pix as a starting point for your
own icons.

Groups Attributes
Groups specifications can use the following attributes.

DefaultState

Syntax DefaultState = Open | Closed;

Description Specifies whether the group should be fully displayed (Open) or displayed only as
its name or DocName (Closed).

DocName

Syntax DocName = "String";

Description Specifies the string to display in the Palette to identify the group. When the Palette
uses the Outline View, this string is displayed next to the folder button. In the Tabbed
View, the string is displayed on the tab corresponding to this group.

control.fm Page 112 Thursday, January 22, 2009 2:38 PM

Catalog File

Customizing Builder Xcessory 113

Catalog Attributes
The following attributes apply to catalog files:

DocName

Syntax DocName = "String";

Description Specifies the name to use for the catalog as whole. This string is displayed in the
Palette window’s title bar if the catalog is loaded into an empty Palette.

Include

Syntax Include "CatalogFileName";

Description Specifies another catalog file that should be included whenever this catalog file is
loaded. The CatalogFileName can be either a fully qualified pathname (such as
/usr/local/ui/extra.cat) or simply the name of the catalog (such as
extra.cat). In the former case, Builder Xcessory simply loads the specified file. In the
latter case, Builder Xcessory looks in both
${HOME}/.builderXcessory6/package and
{BX}/xcessory/package for a file of the given name.

Conditions
Both the item and the group can optionally name conditions under which they should
appear on the Palette. Conditions consist of one or more tests combined using logical
AND (&&) and inclusive OR (||) operators. You can specify groupings and
precedence using parentheses. If no groupings are specified, tests are performed
from left to right.

Test types The valid tests are of two types:

• Unary tests for the truth of a state

• Binary tests of two values

Unary tests Unary tests are specified using SystemAttribute(<tag>). If the attribute to which the
<tag> refers is set as true, SystemAttribute resolves as true. You can negate the test
using the ’!’ character.

control.fm Page 113 Thursday, January 22, 2009 2:38 PM

Catalog File

114 Customizing Builder Xcessory

Valid System
Attribute tags

The following table lists and defines valid SystemAttribute tags:

Binary tests Binary tests compare a tag attribute to a value. You can make comparisons using the
following operators:

• == for equality

• != for inequality

• < for less than

• > for greater than

• >= for greater than or equal

• <= for less than or equal

Note: You can only make the greater than/less than comparisons on numeric attributes.

Binary valid
tags

The following table lists valid tags in comparisons:

Table 1:

Tag Definition

DXm True if user specified -dec, or loadDEC resource is True.

EPak True if user specified -ics, or loadICS resource is True.

IrisGL True if user specified +openGL, or useOpenGL resource is False.

OpenGL True if user specified -openGL, or useOpenGL resource is True.

Table 2:

Tag Definition Operators

DatabaseName Test the value of the databaseName resource. ==, !=

Env(var) Test the value of the shell environment variable
named "var".

==, !=

Language Test the value of the user’s selected code gener-
ation language.

==, !=

control.fm Page 114 Thursday, January 22, 2009 2:38 PM

Catalog File

Customizing Builder Xcessory 115

Platform Test the name of the operating system on which
BX is running. This is the name returned by the
uname() system call.

==, !=

Version Test the version number of the operating system
on which BX is running. This will be the ver-
sion returned by uname().

==, !=,
<, >,
>=, <=

Table 2:

Tag Definition Operators

control.fm Page 115 Thursday, January 22, 2009 2:38 PM

Collection File

116 Customizing Builder Xcessory

Collection File
The Collection file is a UIL file that describes the hierarchy used to create the object
space.The following example illustrates a sample collection file:

module main_uil
names = case_sensitive

object new_item : NewItem {
arguments { };
controls { };

 callbacks { };
};
end module;

Replace “new_item” with the item name from the Catalog file, and “NewItem”
with the class name from the WML file. This file should be placed in the directory
{BX}/xcessory/collections or
${HOME}/.builderXcessory6/collections with the name
<ClassName>.col.

Control File
This file resides in the directory {BX}/xcessory/tcl or
${HOME}/.builderXcessory6/tcl and is used to load the WML definition
file for your components into Builder Xcessory. The following example illustrates a
sample control file:

@add_wml_file new_items

The name of this file must end in the string “_ctrl.tcl”. At start-up Builder
Xcessory reads all “_ctrl.tcl” files in the {BX}/xcessory/tcl and
${HOME}/.builderXcessory6/tcl directories to discover which WML
files it needs to load. The WML file referenced by this example is either
{BX}/xcessory/wml/new_items.wml or
${HOME}/.builderXcessory6/wml/new_items.wml.

control.fm Page 116 Thursday, January 22, 2009 2:38 PM

Pixmap File

Customizing Builder Xcessory 117

Pixmap File

Note: This is an optional file.

The files must be in XPM format version 3 and should be 32x32 pixels in size. If you
are working on 8-bit video displays, use as few colors as possible. All pixmaps
shipped with Builder Xcessory 6.0 have been redesigned to use a common set of 7
colors and an additional background color to distinguish object sets. A basic pixmap
template defining these colors can be found in
{BX}/xcessory/pixmaps/BXTemplate.pix. The files should be in the
directory {BX}/xcessory/pixmaps/.

control.fm Page 117 Thursday, January 22, 2009 2:38 PM

Pixmap File

118 Customizing Builder Xcessory

control.fm Page 118 Thursday, January 22, 2009 2:38 PM

Customizing Builder Xcessory 119

Using Custom Objects 10
Overview

Note: This chapter provides a feature checklist of object functionality. Read this
chapter if you intend to incorporate your own objects into Builder Xcessory.

This chapter includes the following sections:

• Primitive and Manager Classes

• Composite Widget Classes

• Resources

• Objects that Control Specific Children

objects.fm Page 119 Thursday, January 22, 2009 2:38 PM

Primitive and Manager Classes

120 Customizing Builder Xcessory

Primitive and Manager Classes

Verifying an
object class

To verify that an object class works correctly, confirm the following conditions:

• The object class can be instantiated in Builder Xcessory.
Create an instance of your object. It is advisable to try creating your object as a
child of different parents, preferably all those that are allowed.

• The class name appears correctly in the Resource Editor.
Verify this manually.

• The code is output correctly, has the correct include file for C/C++ output,
compiles, and runs.

Composite Widget Classes

Verifying
children in
controls list

To verify that the correct children are in the controls list, perform the following
operations:

• The default controls list specifies all objects that are possible children
(AllWidgets). If your object can have gadget children, change this to
include gadgets. (AllWidgetsAndGadgets).

• If your object can have only specific children, edit the controls list by
hand.

• Check that the number of children is correctly set. By default any object
that can have children can have an unlimited number of children (see
“Objects that Control Specific Children” on page 122).

objects.fm Page 120 Thursday, January 22, 2009 2:38 PM

Resources

Customizing Builder Xcessory 121

Resources
Ensuring that users
can modify objects
added to Palette

To ensure that users can modify all resources of objects you add to the Palette,
verify the following conditions:

• Each resource can be modified.
Change each resource in the Resource Editor. The object should redisplay
itself correctly. Certain resources are defined as “Creation Only”. If this is
the case, try setting the Recreate directive in the Resource definition sec-
tion of your WML file, as follows:

Recreate = True;

• The (...) editor works for each resource.

• Each resource is output correctly to C or C++, and UIL and compiles and
runs correctly.

• Each resource is output correctly to app-defaults.

• The object runs correctly. Also, some resources are not specifiable in the
app-defaults file. If this is the case, modify the WML file
accordingly, using the AppDefault directive.

• Each resource can be saved and read in correctly.

• If you use UIL as more than a save format, rebuild your UIL compiler.

• If Builder Xcessory cannot determine the correct data type, it defaults to
identifier. You may need to change this to a type appropriate for your
widget (that is, boolean, integer, string_table).

objects.fm Page 121 Thursday, January 22, 2009 2:38 PM

Objects that Control Specific Children

122 Customizing Builder Xcessory

Objects that Control Specific Children
By default, objects that can have children are defined to accept children of any type.
This may not be appropriate for your object. It is possible to redefine this behavior
by modifying the Controls section of the object class definition. For example, the
section:

Controls
{ AllWidgets; };

becomes:
Controls
{ WidgetClass1; WidgetClass2; WidgetClass3; };

where WidgetClassN are the class names of the possible children.

objects.fm Page 122 Thursday, January 22, 2009 2:38 PM

Index

Customizing Builder Xcessory 123

Index
Symbols
{BX} syntax, notation conventions viii
{lang}, definition x
A
abstract classes, integrating 17
adding

callback to predefined function list 46
callbacks 46
extended editors 34
functions to BX by compiling 44
functions to BX by relinking 44
resource type editors 34
widgets 5

AddUserDefinedEditors 50
AddUserFunctions 50
AddUserWidgets, using 9
AllowEmptyValue 90
AllView 89
AlreadyDropsite, class definition 68
AlternateParent, class definition 68
AlwaysDefault 90
AlwaysOutput 90
AlwaysSetValues 90
AppDefaults 90
Asente, Paul 6
AttributeFunction 24
AttributeFunction, class definition 69
attributes, class 66
AugmentDefault 91
AutoSet 91
AutoSubclass, class definition 69

B
binary tests 114
binary valid tags 114
Broken, class definition 69
Builder Xcessory

adding extended editors 5
adding widgets 5
customizing, steps for 2
functions 49
Object Packager, overview 3
search order 48
search path 7
telling how to handle data 3

bx.o file
using to add widgets 8
using to make new BX binaries 2

C
CallbackFunc 91
callbacks

adding 46
adding to predefined function list 46
pre-defined, adding 45

CanBeApp 103
CanBeCode 103
CanBeEmpty 103
catalog

displaying and editing hierarchies 56
editing 60

catalog attributes 113
DocName 113
include 113

Catalog Editor, Object Packager 56
catalog file

contents 109

custIX.fm Page 123 Thursday, January 22, 2009 2:39 PM

124 Customizing Builder Xcessory

Index
format 109

Catalog menu, Object Packager 56
CDE, reference documentation xiii
changing, resource information 86
ChildDimension, class definition 69
ChildFetchFunction, class definition 70
ChildFunction 31
ChildFunction, class definition 70
ChildParentFunction 31
ChildParentFunction, class definition 70
ChildPosition, class definition 71
children

adding to component 31
constraining resources, editing 32
obtaining parent of 31
special, controlled by widgets 122
verifying added widgets 120

class attributes 66–68
class definitions 68–85

AlreadyDropsite 68
AlternateParent 68
AttributeFunction 69
AutoSubclass 69
Broken 69
ChildDimension 69
ChildFetchFunction 70
ChildFunction 70
ChildParentFunction 70
ChildPosition 71
ConstraintFunction 71
Convenience Functions 71
CreatesShell 71
CreationFunction 72
DefaultManaged 73
DialogClass 73
DocName 73
GadgetClass 74
HideShellParent 74
IncludeFile 74
InsertOrder 75
InterfaceMapFunction 75
InternalLiteral 75

InventorComponent 75
LangDir 76
LinkLibrary 76
LiveObject 77
LoadLibrary 77
MaxChildren 78
Movement 78
MyDimension 79
MyPosition 79
NameResource 79
NeverMenuParent 80
NoTransform 80
ObjectName 81
RealClass 81
RelatedDialogClass 81
RepaintBkgnd 81
ShellType 82
SuperClass 82
TclAttributeScript 82
TclCreateScript 83
TclFile 83
TclPostCreateScript 83
UsePositionIndex 84
WidgetClass 84
WidgetGadgetVariation 84
WidgetResource 84
XtLiteral 84

class information, changing 64
Class, item attribute 111
classes

abstract, integrating 17
attributes 66
changing information of 64
compound widget classes 120
data 66
definitions 68
object, verifying 120
setting methods on 19
verifying widget classes 120

classtype values 65
click, definition x
CodeOutput 91

custIX.fm Page 124 Thursday, January 22, 2009 2:39 PM

Index

Customizing Builder Xcessory 125

collection file 116
collection, definition x
CollectionFile, item attribute 111
command line conventions ix
component, definition x
components

abstract 17
creating 16
editing 24
instantiable 16
subclass, editing 27
that take children 30

ConstraintFunction 32
ConstraintFunction, class definition 71
constructor parameter, setting 19
control file 116
Control files 12
control files

Builder Xcessory 108
catalog 108
collection 108
pixmap 108
Tcl 108
WML 108

control files, creating 107
ConvenienceFunction, class definition 71
Converse, Donna 6
create method, example 20
CreateComponent method 21
CreatesShell, class definition 71
creation function 8
creation function prototype 37
creation function, compiling 8
creation functions 36
creation routines

default, overriding 8
Motif-style, description 11
Motif-style, using 12
Xt-style, description 11
Xt-style, using 11

CreationFunction 16
CreationFunction, class definition 72

CreationSet 91
cursor, definition x
custom widgets, using with BX 119
CustomView 92

D
data, class 66
Default 92
DefaultManaged, class definition 73
DefaultState, groups attribute 112
definitions x
DialogClass, class definition 73
DocName 92
DocName, catalog attribute 113
DocName, class definition 73
DocName, groups attribute 112
DocName, item attribute 111
documentation, reference

CDE xiii
EnhancementPak xiii
Java xii
Motif xii
ViewKit xiii
X Window System xii

drag, definition x
drop, definition x
DropFunc 92

E
Edit menu, Object Packager 56, 57

adding and selecting an item 57
Edit Selector 57

Edit Selector, Object Packager Edit menu 57
EditorFetchFunc function prototype 42
EditorUpdateFunc function prototype 40
EnhancementPak, reference documentation xiii
entry points, for resource type editors 36
enumeration information, changing 102
EnumerationSet 92
example

adding a callback to predefined callbacks in
BX 47

custIX.fm Page 125 Thursday, January 22, 2009 2:39 PM

126 Customizing Builder Xcessory

Index
create method, dealing with constructors 20
creation method, split into two components 22
edit method 24
resource type editor update function 40
subclass integration 28
using RegisterResourceEditor 43

Exclude 93
Excuse 93
Exported, item attribute 111
Expose 93
extended editors, adding 34
extensions, file 108

F
fetch functions 41
filename 62
files

Builder Xcessory control 108
catalog, contents 109
catalog, format 109
collection 116
control 12, 116
control, creating 107
extensions 108
installed 108
main-uil 6
object, using 2
pixmap 117
widget, XmDumbLabel 6
WML, changing enumeration information 102
WML, changing resource information 86
WML, modifying 63
WML, UIL data types 105

Forced 93
FreeConvert 93
FuncDef 94
FuncProto 94
function list, adding predefined callbacks to 46
functions

adding to BX by compiling 44
adding to BX by relinking 44
Builder Xcessory 49

creation 36
defining 36
fetch 41
update 40

G
gadget, definition x
GadgetClass, class definition 74
get mode 26, 29
GetRoutine 94
glossary x
groups attributes 112

DefaultState 112
DocName 112

groups, specifications 110

H
Help menu, Object Packager 56
HideShellParent, class definition 74

I
Ignore 94
Include, catalog attribute 113
IncludeFile, class definition 74
index, notation conventions viii
information, about available widgets 6
Insensitive 94
InsertOrder, class definition 75
installed files 108
InterceptWMDelete 47
InterfaceMapFunction, class definition 75
internal structures, updating 39
InternalLiteral 95
InternalLiteral, class definition 75
InventorComponent, class definition 75
item attributes 111–112, ??–112

Class 111
CollectionFile 111
DocName 111
Exported 111
PixmapFile 112

item, specifications 110

custIX.fm Page 126 Thursday, January 22, 2009 2:39 PM

Index

Customizing Builder Xcessory 127

J
Java, reference documentation xii

K
KeepOnMove 95

L
LangDir 95
LangDir, class definition 76
languages, notation conventions viii
LastWordConvert 95
libraries

building 34
loading 59
shared, compiling to 44
widget, loading data from 59

LinkLibrary, class definition 76
literals, notation conventions ix
LiveObject, class definition 77
LoadLibrary, class definition 77
localDirectory 62

M
main file, editing 6
main-uil file 6
MaxChildren, class definition 78
MB1, definition xi
MB2, definition xi
MB3 Quick Access menu, definition xi
MB3, definition xi
menus, notation conventions ix
Message area, Object Packager 56
MethodName 96
methods, setting on a class 19
Motif reference documentation xii
Motif, style creation routines 11
motifzone, website 6
Movement, class definition 78
MyDimension, class definition 79
MyPosition, class definition 79

N
NameResource, class definition 79
NeverMenuParent, class definition 80
NeverSet 96
NeverVerify 96
notation viii
notation conventions ix

{BX} viii
index viii
languages viii
literals ix
menu ix
objects ix

NoTransform, class definition 80

O
Object Class Diagram 65
object file, using 2
Object Packager

Catalog Editor 56
Catalog menu 56
Edit menu 56, 57
Edit menu, adding and selecting an item 57
Help menu 56
introduction 54
main window 54
menubar 56
Message area 56
overview 3
starting 54
Toolbar 56
View menu 56
WML menu 56

ObjectName, class definition 81
objects

definition xi
dragging, definition x
dropping, definition x
notation conventions ix
resizing, definition xi
selecting, definition xi

custIX.fm Page 127 Thursday, January 22, 2009 2:39 PM

128 Customizing Builder Xcessory

Index
obtaining, parent for children 31
OverrideDefault 96

P
parent, obtaining for children 31
paste buffer, definition xi
pixmap file 117
PixmapFile, item attribute 112
pre-defined callbacks, adding 45
prefix 62

R
ReadInitialValue 96
ReadOnly 97
RealClass, class definition 81
Recreate 97
RecreateParent 97
registering, resource type editors 42
RegisterResourceEditor function prototype 43
RegisterUserCallback 50
RegisterUserEditor 50
RegisterUserTypedCallback 50
Related 97
RelatedDialogClass, class definition 81
RelatedFont 97
RepaintBkgnd, class definition 81
resizing objects, definition xi
resource attributes 87–89
resource editor type, entry points 36
Resource Editor, adding extended editors 5
resource type editors

adding 34
registering 42

ResourceLiteral 98
resources

changing definition 35
changing information 86
conditions for users ability to modify 121
definition xi
editing 24
editing on subclass components 27
filename 62

localDirectory 62
methods, for setting 18
prefix 62
setting methods on 24
specifying in WML file 86
systemDirectory 62

resourcetype values 86
routine, writing 21

S
search order, in Builder Xcessory 48
search path 7
session, definition xi
set mode 26, 27
SetRoutine 98
SetRscEditorUpdate 39, 51
SetRscEditorUpdate function prototype 39
setting

constructor parameter 19
resources 18

ShellType, class definition 82
simple editor 36
simple editor creation function 38
subclasses 21
subclasses, managing 21
SuperClass, class definition 82
Swick, Ralph 6
system attribute tags 114
systemDirectory 62
systems running SunOS 46
systems running SunOS 4 34

T
tags, system attribute 114
TclAttributeScript, class definition 82
TclCreateScript, class definition 83
TclFile, class definition 83
TclPostCreateScript, class definition 83
ThrowAwayOnPaste 98
Toolbar, Object Packager 56
Type 98
TypeName 99, 104

custIX.fm Page 128 Thursday, January 22, 2009 2:39 PM

Index

Customizing Builder Xcessory 129

TypeSize 104

U
UI object, definition xi
UIL data types 105
UIL files, generated by BX 6
Unassigned Catalog 60
UnderScoreConvert 99
update functions 40
UpdateAllRsc 99
UsePositionIndex 84
UsePositionIndex, class definition 84
user-defined widgets 6
using, object file 2
V
View menu, Object Packager 56
ViewKit, reference documentation xiii

W
websites, motifzone 6
widget, definition xi
WidgetClass, class definition 84
WidgetGadgetVariation, class definition 84
WidgetResource, class definition 84
widgets

adding custom 5
adding with bx.o file 8
commercial sources 6
controlling special children 122
hierarchy generated in creation function 36
information about 6
libraries, loading data from 59
loading, dynamically 7
user-added, testing 119
user-defined 6
website information on 6

WlShellsOnly 100
WlSkipSelf 100
WlUseAll 100
WlUseClasses 100
WlUseSiblings 101

WlUseSOSC 101
WML file 63

changing enumeration information 102
changing resource information 86
editing 57
modifying 35
specifying resources 86
structure 64
UIL data types 105

WML menu, Object Packager 56

X
X Window System reference documentation xii
X Window System Toolkit, reference 6
XmDumbLabel 6
XrmResource 101
Xt, style creation routines 11
XtLiteral, class definition 84

custIX.fm Page 129 Thursday, January 22, 2009 2:39 PM

130 Customizing Builder Xcessory

Index

custIX.fm Page 130 Thursday, January 22, 2009 2:39 PM

	Customizing Builder Xcessory
	Copyright © 2002-2009 Integrated Computer Solutions, Inc.
	Trademarks
	How to Use This Manual
	Chapter 1- Extending Builder Xcessory
	Chapter 2- Adding Widgets
	Chapter 3- Adding C++ Components
	Chapter 4- Adding Resource Type Editors
	Chapter 5- Adding Predefined Callbacks
	Chapter 6- Builder Xcessory Functions
	Chapter 7- Using the BX Object Packager
	Chapter 8- Modifying the WML File
	Chapter 9- Creating Other Control Files
	Chapter 10- Using Custom Objects
	Index 123

	how.pdf
	How to Use This Manual
	Overview
	Notation Conventions
	{BX}
	Index
	Languages
	Lists
	1. Numbered lists present steps to perform in sequence.

	Objects
	Menu Notation
	Text

	Definitions
	Click
	Collection
	Component
	Cursor
	Drag
	Drop
	Enter
	Gadget
	{lang}
	MB1, MB2 and MB3
	MB3 Quick Access menu
	Object/ UI object
	Paste buffer
	Resize
	Resource
	Select
	Session
	Widget
	WML

	Prerequisite Knowledge
	OSF/Motif documentation
	X Window System documentation
	CDE documentation
	ViewKit documentation
	EPak documentation

	overview.pdf
	Extending Builder Xcessory 1
	Overview
	Extending Builder Xcessory
	Steps for customizing Builder Xcessory
	Ensuring Availability of Data to Builder Xcessory
	Using an object file

	Telling Builder Xcessory How to Handle Data
	Builder Xcessory Object Packager

	Summary of Customization Procedures

	addwidget.pdf
	Adding Widgets 2
	Overview
	Obtaining a Widget
	User-defined Widgets
	Information Sources
	XmDumbLabel widget files

	Making the Widgets Available
	How Builder Xcessory Searches for a Library
	Complete search path

	Specifying the Widget Creation Function
	Creation function
	Compiling the creation function
	1. Use the correct position-independent code flag for your compiler.
	2. Create a shared library that contains this new object and is linked to the necessary widget library.
	3. Put this new intermediary library in one of the directories that Builder Xcessory searches.
	4. Specify the new function in the widget’s creation function WML attribute.

	Adding Widgets Using the bx.o File
	Using AddUser Widgets

	Example
	Motif-style creation routine
	Xt-style creation routine
	Using an Xt-style creation routine
	Using a Motif-style creation routine
	Building a new Builder Xcessory executable

	Generating WML And Other Control Files
	Control files
	Builder Xcessory Object Packager
	Modifying WML Files

	addcomp.pdf
	Adding C++ Components 3
	Overview
	Adding Components
	Creating a Component (CreationFunction)
	Regular instantiable components
	Conditions for calling the routine

	Abstract Components
	Integrating an abstract class
	Managing additional constructor parameters

	Methods For Setting Resources
	Setting methods on a class
	Setting the constructor parameter
	Example create method dealing with constructors

	Managing Subclasses of Existing Components
	Subclasses
	Writing a new CreateComponent method
	Writing a routine
	Example

	Editing a Component (AttributeFunction)
	Editing component resources

	Example Edit Method
	Set mode
	Get mode

	Editing Resources On Subclass Components
	Set Mode
	Example

	Get Mode
	Code

	Components That Can Take Children
	Obtaining the Parent for Children (ChildParentFunction)
	Adding A Child To The Component (ChildFunction)
	Editing Child Constraint Resources (ConstraintFunction)

	addeditor.pdf
	Adding Resource Type Editors 4
	Overview
	Adding Resource Type Editors
	Adding extended editors
	Building the library
	Static Integration
	Example
	Modifying the WML file
	Changing the resource definition

	Entry points
	Defining functions

	Creation Functions
	Simple editor
	Widget Hierarchy Generated in the Creation Function
	Creation Function Prototype
	Simple Editor Creation Function
	Allowing Builder Xcessory to Update Internal Structures
	SetRscEditorUpd ate
	SetRscEditorUpd ate function prototype

	Update Functions
	EditorUpdateFunc Function Prototype
	Example

	Fetch Functions
	EditorFetch- Func function prototype

	Registering Resource Type Editors
	RegisterResourceEditor Function Prototype
	Example

	Compiling to a Shared Library
	Adding functions to Builder Xcessory by compiling

	Relinking Builder Xcessory
	Adding functions to Builder Xcessory by relinking

	addcallback.pdf
	Adding Predefined Callbacks 5
	Overview
	This chapter includes the following sections:
	Adding Callbacks
	Builder Xcessory allows you to add callbacks of your own design to the list of predefined callbacks in the Callback Editor. The procedure for adding predefined callbacks is similar to that of adding resource editors.
	On most systems, Builder Xcessory dynamically loads the shared library containing the callbacks. If there is a function in that ...
	To construct this library, build a shared library and include an object file with the function AddUserFunctions defined in it.
	When Builder Xcessory starts, it looks in both locations (the definitions in the second override the definitions in the first):
	Static Integration

	On systems where shared libraries are not available, you must modify your interface file (addWidgets.c in our example), and add ...
	Adding a Callback to Predefined Function List

	To add a callback function to the predefined function list, you must register the function by calling one of the following functions:
	Example

	The following sections illustrate an example of adding the callback function InterceptWMDelete to the list of predefined callbacks in Builder Xcessory. InterceptWMDelete is written to be placed on a shell widget in its popupCallback.
	InterceptWMDel ete

	InterceptWMDelete registers another function (Intercepted) with the X Translation Manager that is called when a shell receives the WM_DELETE_WINDOW protocol message.
	The actual code for this function can be found in the {BX}/examples directory in the file intwmdel.c.
	Adding the function to Builder Xcessory

	To add this function to builder xcessory, you would include the following call to RegisterUserCallback in AddUserFunctions:
	Because InterceptWMDelete does not expect any client data, you might want to ensure that the user cannot enter a client_data parameter inside Builder Xcessory.
	Ensuring that the user cannot enter client data

	To ensure that the user cannot enter client_data parameters you must use RegisterUserTypedCallback and indicate a parameter_type of “None”, as follows:
	This example registers the function InterceptWMDelete. When generating code, Builder Xcessory looks for a file with the same nam...
	Builder Xcessory search order

	Builder Xcessory searches for InterceptWMDelete in the gen directories. The order in which it searches is:
	where {LANG} is the language for which code is being generated. This search order allows you to better customize the generated code for the chosen language.

	functions.pdf
	Builder Xcessory Functions 6
	Overview
	RegisterUserCallback and RegisterUserTypedCallback
	AddUserDefinedEditors
	AddUserFunctions
	RegisterUserEditor
	SetRscEditorUpdate

	objpack.pdf
	Using the BX Object Packager 7
	Overview
	Builder Xcessory Object Packager
	Starting the Builder Xcessory Object Packager
	Builder Xcessory Object Packager Main Window
	Figure 1. BX Object Packager Main Window
	Menubar
	WML menu
	Edit menu
	Catalog menu
	View menu
	Help menu

	Toolbar
	Catalog Editor
	Message Area

	Editing WML Files
	BX Object Packager Edit Menu
	Edit Selector
	Figure 2. Editor Selector with Two Classes Defined

	Adding and selecting an item
	Classes and Resources
	Figure 3. Data Editor Screen

	Loading Data From Widget Libraries
	Loading a library
	1. Click on the Class button.
	2. In the Class Editor Selector, enter the class name for the widget or gadget.
	3. Click on Edit Selected to edit the class.
	4. On the Class Data screen, check that Object Type is either Widget or Gadget.
	5. Set XtLiteral to the name of the widget class (for example, for XmDumbLabel, set it to xmDumbLabelWidgetClass).
	6. Select LiveObject, which tells the Builder Xcessory to load the class defined in the WML file automatically from the library when it runs.
	7. Specify LoadLibrary to name the library to load it from.
	8. Move to the next field with the Tab key. A dialog appears to confirm that the resources should be loaded.

	Background WML Files
	Editing the Catalog
	Unassigned Catalog
	Command-line Options and Resources
	Resources
	filename
	localDirectory
	prefix
	systemDirectory

	wmlfile.pdf
	Modifying the WML File 8
	Overview
	WML Files
	WML file structure

	Changing Class Information
	Object Class Diagram
	<classtype> values
	Resources
	Controls
	Children

	Class Attributes
	Class Definitions
	AlreadyDropsite
	Syntax
	Used By
	Description
	AlternateParent

	Syntax
	Used By
	AttributeFunction

	Syntax
	Used By
	Description
	AutoSubclass

	Syntax
	Used By
	Description
	Broken

	Syntax
	Used By
	Description
	ChildDimension

	Syntax
	Used By
	Description
	ChildFetchFunction

	Syntax
	Used By
	Description
	ChildFunction

	Syntax
	Used By
	Description
	ChildParentFunction

	Syntax
	Used By
	Description
	ChildPosition

	Syntax
	Used By
	Description
	ConstraintFunction

	Syntax
	Used By
	Description
	ConvenienceFunction

	Syntax
	Used By
	Description
	CreatesShell

	Syntax
	Used By
	Description
	CreationFunction

	Syntax
	Used By
	Description
	DefaultManaged

	Syntax
	Used By
	Description
	DialogClass

	Syntax
	Used By
	Description
	DocName

	Syntax
	Used By
	GadgetClass

	Syntax
	Used By
	Description
	HideShellParent

	Syntax
	Used By
	Description
	IncludeFile

	Syntax
	Used By
	Description
	InsertOrder

	Syntax
	Used By
	Description
	InterfaceMapFunction

	Syntax
	Used By
	InternalLiteral

	Syntax
	Used By
	InventorComponent

	Syntax
	Used By
	Description
	LangDir

	Syntax
	Used By
	Description
	LinkLibrary

	Syntax
	Used By
	Description
	LiveObject

	Syntax
	Used By
	Description
	LoadLibrary

	Syntax
	Used By
	Description
	MaxChildren

	Syntax
	Used By
	Description
	Movement

	Syntax
	Used By
	Description
	MyDimension

	Syntax
	Used By
	Description
	MyPosition

	Syntax
	Used By
	Description
	NameResource

	Syntax
	Used By
	Description
	NeverMenuParent

	Syntax
	Used By
	Description
	NoTransform

	Syntax
	Used By
	Description
	ObjectName

	Syntax
	Used By
	Description
	RealClass

	Syntax
	Used By
	Description
	RelatedDialogClass

	Syntax
	Used By
	Description
	RepaintBkgnd

	Syntax
	Used By
	ShellType

	Syntax
	Used By
	Description
	SuperClass

	Syntax
	Used By
	Description
	TclAttributeScript

	Syntax
	Used By
	Description
	TclCreateScript

	Syntax
	Used By
	Description
	TclFile

	Syntax
	Used By
	Description
	TclPostCreateScript

	Syntax
	Used By
	Description
	UsePositionIndex

	Syntax
	Used By
	WidgetClass

	Syntax
	Used By
	Description
	Syntax
	Used By
	Description
	WidgetResource

	Syntax
	Used By
	XtLiteral

	Syntax
	Used By
	Description

	Changing Resource Information
	Specifying a resource in the WML file
	ActionView

	Syntax
	Used By
	Description
	AllView

	Syntax
	Used By
	Description
	AllowEmptyValue

	Syntax
	Used By
	Description
	AlwaysDefault

	Syntax
	Used By
	AlwaysOutput

	Syntax
	Used By
	Description
	AlwaysSetValues

	Syntax
	Used By
	Description
	AppDefaults

	Syntax
	Used By
	Description
	AugmentDefault

	Syntax
	Used By
	AutoSet

	Syntax
	Used By
	BeView

	Syntax
	Used By
	Description
	CallbackFunc

	Syntax
	Used By
	CodeOutput

	Syntax
	Used By
	Description
	CreationSet

	Syntax
	Used By
	Description
	CustomView

	Syntax
	Used By
	Description
	Default

	Syntax
	Used By
	Description
	DocName

	Syntax
	Used By
	DropFunc

	Syntax
	Used By
	EnumerationSet

	Syntax
	Used By
	Description
	Exclude

	Syntax
	Used By
	Description
	Excuse

	Syntax
	Used By
	Description
	Expose

	Syntax
	Used By
	Description
	Forced

	Syntax
	Used By
	FreeConvert

	Syntax
	Used By
	Description
	FuncDef

	Syntax
	Used By
	FuncProto

	Syntax
	Used By
	GetRoutine

	Syntax
	Used By
	Ignore

	Syntax
	Used By
	Description
	Insensitive

	Syntax
	Used By
	InternalLiteral

	Syntax
	Used By
	Syntax
	Used By
	Description
	KeepOnMove

	Syntax
	Used By
	LangDir

	Syntax
	Used By
	Description
	LastWordConvert

	Syntax
	Used By
	Description
	MethodName

	Syntax
	Used By
	Description
	NeverSet

	Syntax
	Used By
	Description
	NeverVerify

	Syntax
	Used By
	Description
	OverrideDefault

	Syntax
	Used By
	Description
	ReadInitialValue

	Syntax
	Used By
	ReadOnly

	Syntax
	Used By
	Description
	Recreate

	Syntax
	Used By
	Description
	RecreateParent

	Syntax
	Used By
	Description
	Related

	Syntax
	Used By
	Description
	RelatedFont

	Syntax
	Used By
	Description
	ResourceLiteral

	Syntax
	Used By
	SetRoutine

	Syntax
	Used By
	Description
	TclScript

	Syntax
	Used By
	Description
	ThrowAwayOnPaste

	Syntax
	Used By
	Description
	Type

	Syntax
	Used By
	Description
	TypeName

	Syntax
	Used By
	Description
	Syntax
	Used By
	Description
	UnderScoreConvert

	Syntax
	Used By
	Description
	UpdateAllRsc

	Syntax
	Used By
	Description
	VisualView

	Syntax
	Used By
	Description
	Syntax
	Used By
	Description
	WlSkipSelf

	Syntax
	Used By
	Description
	WlUseAll

	Syntax
	Used By
	Description
	WlUseClasses

	Syntax
	Used By
	Description
	Syntax
	Used By
	Description
	WlUseSiblings

	Syntax
	Used By
	Description
	XrmResource

	Syntax
	Used By

	Changing Enumeration Information
	Changing DataType Information
	CanBeApp
	Syntax
	Used By
	Description
	CanBeCode

	Syntax
	Used By
	Description
	CanBeEmpty

	Syntax
	Used By
	Description
	TypeName

	Syntax
	Used By
	Description
	TypeSize

	Syntax
	Used By
	Description

	Changing Other WML Entries
	UIL Data Types

	control.pdf
	Creating Other Control Files 9
	Overview
	Builder Xcessory Control Files
	File extensions
	Installed files

	Catalog File
	Contents of catalog file
	Catalog File Format
	Group specifications
	Item specifications

	Item Attributes
	Class
	Syntax
	Description
	CollectionFile

	Syntax
	Description
	DocName

	Syntax
	Description
	Exported

	Syntax
	Description
	LargePixmapFile

	Syntax
	Description
	PixmapFile

	Syntax
	Description

	Groups Attributes
	DefaultState
	Syntax
	Description
	DocName

	Syntax
	Description

	Catalog Attributes
	DocName
	Syntax
	Description
	Include

	Syntax
	Description

	Conditions
	Test types
	Unary tests
	Valid System Attribute tags
	Table 1:

	Binary tests
	Binary valid tags
	Table 2:

	Collection File
	Control File
	Pixmap File

	objects.pdf
	Using Custom Objects 10
	Overview
	Primitive and Manager Classes
	Verifying an object class

	Composite Widget Classes
	Verifying children in controls list

	Resources
	Ensuring that users can modify objects added to Palette

	Objects that Control Specific Children

	custIX.pdf
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

